Сообщение на тему реактивное движение в технике. Биофизика: реактивное движение в живой природе. Реактивный способ движения медуз

Сегодня реактивное движение у большинства людей в первую очередь, конечно же, ассоциируется с новейшими научными и техническими разработками. Из учебников по физике нам известно, что под «реактивным» подразумевают движение, которое возникает в результате отделения от предмета (тела) любой его части. Человек хотел подняться в небо к звёздам, стремился летать, но осуществить свою мечту смог только с появлением реактивных самолетов и ступенчатых космических кораблей, способных перемещаться на огромные расстояния, разгоняясь до сверхзвуковых скоростей, благодаря установленным на них современным реактивным двигателям. Конструктора и инженеры разрабатывали возможность использования реактивного движения в двигателях. Фантасты тоже не оставались в стороне, предлагая самые невероятные идеи и способы достижения этой цели. Удивительно, но этот принцип перемещения широко распространен в живой природе. Достаточно осмотреться вокруг, можно заметить обитателей морей и суши, среди которых есть и растения, в основе движения которых лежит реактивный принцип.

История

Еще в античные времена ученые с интересом изучали и анализировали явления, связанные с реактивным движением в природе. Одним из первых, кто теоретически обосновал и описал его суть, был Герон, механик и теоретик Древней Греции, который изобрел первый паровой двигатель, названый в честь него. Китайцы смогли найти реактивному методу практическое применение. Они первыми, взяв за основу способ передвижения каракатиц и осьминогов, еще в XIII веке изобрели ракеты. Они применялись в фейерверках, производя большое впечатление, а также, как сигнальные ракеты, возможно были и боевые ракеты, которые использовались как реактивная артилерия. Со временем эта технология пришла и в Европу.

Первооткрывателем нового времени стал Н. Кибальчич, придумав схему прототипа летательного аппарата с реактивным двигателем. Он был выдающимся изобретателем и убежденным революционером, за что сидел в тюрьме. Именно находясь в заключении, он вошел в историю, создав свой проект. После его казни за активную революционную деятельность и выступления против монархии, его изобретение было забыто на архивных полках. Спустя некоторое время К.Циолковский смог усовершенствовать идеи Кибальчича, доказывая возможность исследовать космическое пространство посредством реактивного перемещения космических кораблей.

Позже, в ходе Великой Отечественной войны, появились знаменитые Катюши, системы полевой реактивной артиллерии. Так ласковым именем народ неофициально именовал мощные установки, которые применяли силы СССР. Достоверно неизвестно, в связи с чем, оружие получило это название. Причиной этому стала то ли популярность песни Блантера, то ли буква «К» на корпусе миномёта. Со временем фронтовики стали давать прозвища и другому оружию, создав, таким образом, новую традицию. Немцы же эту боевую ракетную установку называли «сталинским органом» за внешний вид, который напоминал музыкальный инструмент и пронзительный звук, который исходил от стартующих ракет.

Растительный мир

Представителями фауны также используются законы реактивного движения. Большую часть растений, обладающих такими свойствами составляют однолетники и малолетники: колючеплодник, чесночница черешчатая, сердечник недотрога, пикульник двунадрезный, мёрингия трёхжилковая.

Колючеплодник, иначе бешеный огурец, относят к семейству тыквенных. Это растение достигает больших размеров, имеет толстый корень с шершавым стеблем и крупными листьями. Произрастает на территории Средней Азии, Средиземноморья, на Кавказе, довольно распространен на юге России и Украины. Внутри плода в период созревания семян преобразуется в слизь, которая под действием температур начинает бродить и выделять газ. Ближе к созреванию давление внутри плода может достигнуть 8 атмосфер. Тогда при легком прикосновении плод отрывается от основания и семена с жидкостью со скоростью 10 м/с вылетают из плода. Благодаря способности стрелять на 12 м. в длину, растение назвали «дамский пистолет».

Сердечник недотрога — однолетний широко распространённый вид. Встречается, как правило, в тенистых лесах, по берегам вдоль рек. Попав в северо-восточную часть Северной Америки и в Южную Африку, благополучно прижился. Сердечник-недотрога размножается семенами. Семена у сердечника-недотроги мелкие, массой не более 5 мг, которые отбрасываются на расстояние в 90 см. Благодаря такому способу распространения семян, растение и получило свое название.

Животный мир

Реактивное движениеинтересные факты, касающиеся животного мира. У головоногих моллюсков реактивное перемещение происходит посредством воды, выдыхаемой через сифон, который обычно сужается к небольшому отверстию для получения максимальной скорости выдоха. Вода через жабры проходит до выдоха, выполняя двойную цель дыхания и перемещения. Морские зайцы, иначе брюхоногие моллюски, используют аналогичные средства движения, но без сложного неврологического аппарата головоногих, они перемещаются более неуклюже.

Некоторые рыбы-рыцари также развили реактивное перемещение, пропуская воду через жабры, чтобы дополнить плавниковое движение.

У личинок стрекоз реактивная сила достигается путем вытеснения воды из специализированной полости в организме. Морские гребешки и кардиды, сифонофоры, туники (такие, как сальпы) и некоторые медузы, также используют реактивную тягу.

Большую часть времени морские гребешки спокойно лежат на дне, но в случае появления опасности, быстро смыкают створки своей раковины, так они выталкивают воду. Этот механизм поведения тоже говорит об использовании принципа реактивного перемещения. Благодаря ему, гребешки могут всплывать и перемещаться на большое расстояние, применяя технику открытия-закрытия раковины.

Кальмар также применяет этот метод, вбирает в себя воду, а затем с огромной силой проталкивая через воронку движется скоростью не менее 70 км./ч. Собирая щупальцы в один узел, тело кальмара образует обтекаемую форму. Взяв за основу такой двигатель кальмара, инженерами был сконструирован водомет. Вода в нем засасывается в камеру, а после выбрасывается через сопло. Таким образом, судно направляется в обратную сторону от выбрасываемой струи.

Если сравнить с кальмарами, наиболее эффективными двигателями пользуются сальпы, тратя на порядок меньше энергии, чем кальмары. Двигаясь сальпа запускает воду в отверстие спереди, а затем поступает в широкую полость, где натянуты жабры. После глотка отверстие закрывается, а с помощью сокращающихся продольных и поперечных мускул, которые сжимают тело, происходит выброс воды через отверстие сзади.

Самым необычным из всех механизмов передвижения может похвастаться обыкновенная кошка. Марсель Депре высказал предположение, что тело способно двигаться и изменять свое положение даже с помощью одних только внутренних сил (ни от чего не отталкиваясь и ни на что не опираясь), из чего можно было сделать вывод, что законы Ньютона могут быть ошибочны. Доказательством его предположению могла послужить кошка, которая сорвалась с высоты. Во время падения вниз головой, она все равно приземлится на все лапы, это стало уже своего рода аксиомой. Детально сфотографировав перемещение кошки, смогли по кадрам рассмотреть, все, что она проделывала в воздухе. Увидели ее движение лапой, которое вызвало ответную реакцию туловища, поворачиваясь в другую сторону относительно движения лапки. Действуя по законам Ньютона, кошка удачно приземлилась.

У животных все происходит на уровне инстинкта, человек в свою очередь делает сознательно. Профессиональные пловцы, прыгнув с вышки успевают трижды обернуться в воздухе, и сумев приостановить вращение, выпрямляются строго вертикально и ныряют в воду. Этот же принцип действует в отношении воздушных цирковых гимнастов.

Сколько бы человек не пытался превзойти природу, совершенствуя созданные ею изобретения, все равно мы пока не достигли того технологического совершенства, когда бы самолеты могли повторить действия стрекозы: зависать в воздухе, мгновенно подаваться назад или двигаться в сторону. Причем все это происходит на большой скорости. Возможно, пройдет еще немного времени и самолеты, благодаря поправкам на особенности аэродинамики и реактивные возможности стрекоз, смогут совершать крутые развороты и станут менее восприимчивы к внешним условиям. Подсмотрев у природы, человек еще многое может усовершенствовать на благо технического прогресса.

Реактивное движение в природе».

Выполнила ученица:

10 «А» класса

Каклюгина Екатерина.

Реактивное движение - движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техно изобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике.

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”. Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.

Для большинства людей термин «реактивное движение» представляется в виде современного прогресса в науке и технике, особенно в области физики. Реактивное движение в технике ассоциируется у многих с космическими кораблями, спутниками и реактивной авиатехникой. Оказывается, явление реактивного движения существовало намного раньше, чем сам человек, и независимо от него. Люди лишь сумели понять, воспользоваться и развить то, что подчинено законам природы и мироздания.

Что такое реактивное движение?

На английском языке слово «реактивный» звучит как «jet». Под ним подразумевается движение тела, которое образуется в процессе отделения от него части с определенной скоростью. Проявляется сила, которая двигает тело в обратную сторону от направления движения, отделяя от него часть. Каждый раз, когда материя вырывается из предмета, а предмет при этом движется в обратном направлении, наблюдается реактивное движение. Для того чтобы поднимать предметы в воздух, инженеры должны спроектировать мощную реактивную установку. Выпуская струи пламени, двигатели ракеты поднимают ее на орбиту Земли. Иногда ракеты запускают спутники и космические зонды.

Что касается авиалайнеров и военных самолетов, то принцип их работы чем-то напоминает взлет ракеты: физическое тело реагирует на выбрасываемую мощную струю газа, в результате чего оно движется в противоположную сторону. Это и есть основной принцип работы реактивных самолетов.

Законы Ньютона в реактивном движении

Инженеры основывают свои разработки на принципах устройства мироздания, впервые подробно описанных в работах выдающегося британского ученого Исаака Ньютона, жившего в конце 17 столетия. Законы Ньютона описывают механизмы гравитации и рассказывают нам о том, что происходит, когда предметы движутся. Они особенно четко объясняют движение тел в пространстве.

Второй закон Ньютона определяет, что сила движущегося предмета зависит от того, сколько материи он вмещает, иными словами, его массы и изменения скорости движения (ускорения). Значит, чтобы создать мощную ракету, необходимо, чтобы она постоянно выпускала большое количество высокоскоростной энергии. Третий закон Ньютона говорит о том, что на каждое действие будет равная по силе, но противоположная реакция - противодействие. Реактивные двигатели в природе и технике подчиняются этим законам. В случае с ракетой сила действия - материя, которая вылетает из выхлопной трубы. Противодействием является толчок ракеты вперед. Именно сила выбросов из нее толкает ракету. В космосе, где ракета практически не имеет веса, даже незначительный толчок от ракетных двигателей способен заставить большой корабль быстро лететь вперед.

Техника, использующая реактивное движение

Физика реактивного движения состоит в том, что ускорение или торможение тела происходит без влияния окружающих тел. Процесс происходит вследствие отделения части системы.

Примеры реактивного движения в технике - это:

  1. явление отдачи от выстрела;
  2. взрывы;
  3. удары во время аварий;
  4. отдача при использовании мощного брандспойта;
  5. катер с водометным двигателем;
  6. реактивный самолет и ракета.

Тела создают закрытую систему, если они взаимодействуют лишь друг с другом. Такое взаимодействие может привести к изменению механического состояния тел, образующих систему.

В чем заключается действие закона сохранения импульса?

Впервые этот закон был оглашен французским философом и физиком Р. Декартом. При взаимодействии двух или больше тел образовывается между ними замкнутая система. Любое тело при движении обладает своим импульсом. Это масса тела, умноженная на его скорость. Общий импульс системы равен векторной сумме импульсов тел, находящихся в ней. Импульс любого из тел внутри системы меняется вследствие их взаимного влияния. Общий импульс тел, находящихся в замкнутой системе, остается неизменным при различных перемещениях и взаимодействиях тел. В этом состоит закон сохранения импульса.

Примерами действия этого закона могут быть любые столкновения тел (бильярдных шаров, автомобилей, элементарных частиц), а также разрывы тел и стрельба. При выстреле из оружия происходит отдача: снаряд мчится вперед, а само оружие отталкивается назад. Из-за чего это происходит? Пуля и оружие формируют между собой замкнутую систему, где работает закон сохранения импульса. При стрельбе импульсы самого оружия и пули меняются. Но суммарный импульс оружия и находящейся в нем пули перед выстрелом будет равен суммарному импульсу откатывающегося оружия и выпущенной пули после стрельбы. Если бы пуля и ружье имели одинаковую массу, они бы разлетелись в противоположные стороны с одинаковой скоростью.

Закон сохранения импульса имеет широкое практическое применение. Он позволяет объяснить реактивное движение, благодаря которому достигаются наивысшие скорости.

Реактивное движение в физике

Самым ярким образцом закона сохранения импульса служит реактивное движение, осуществляемое ракетой. Важнейшей частью двигателя выступает камера сгорания. В одной из ее стенок находится реактивное сопло, приспособленное для выпуска газа, возникающего при сжигании топлива. Под действием высокой температуры и давления газ на огромной скорости выходит из сопла двигателя. Перед стартом ракеты ее импульс относительно Земли равняется нулю. В момент запуска ракета также получает импульс, который равняется импульсу газа, но противоположный по направлению.

Пример физики реактивного движения можно увидеть везде. Во время празднования дня рождения воздушный шарик вполне может стать ракетой. Каким образом? Надуйте воздушный шар, зажимая открытое отверстие, чтобы воздух не выходил из него. Теперь отпустите его. Воздушный шар с огромной скоростью будет гонять по комнате, подгоняемый воздухом, вылетающим из него.

История реактивного движения

История реактивных двигателей началась еще за 120 лет до н.э., когда Герон Александрийский сконструировал первый реактивный двигатель - эолипил. В металлический шар наливают воду, которая нагревается огнем. Пар, который вырывается из этого шара, вращает ее. Это устройство показывает реактивное движение. Двигатель Герона жрецы успешно применяли для открывания и закрывания дверей храма. Модификация эолипила - Сегнерово колесо, которое эффективно используется в наше время для полива сельскохозяйственных угодий. В 16-м столетии Джовани Бранка представил миру первую паровую турбину, которая работала на принципе реактивного движения. Исаак Ньютон предложил один из первых проектов парового автомобиля.

Первые попытки использования реактивного движения в технике для перемещения по земле относят к 15-17 столетиям. Еще 1000 лет назад китайцы имели ракеты, которые использовали как военное оружие. Например, в 1232 году, согласно хронике, в войне с монголами они использовали стрелы, оборудованные ракетами.

Первые попытки построения реактивного самолета начались еще в 1910 году. За основу были взяты ракетные исследования прошлых веков, где подробно повествовалось об использовании пороховых ускорителей, способных существенно сократить длину форсажа и разбега. Главным конструктором стал румынский инженер Анри Коанда, построивший летательный аппарат, работающий на основе поршневого двигателя. Первооткрывателем реактивного движения в технике по праву можно назвать инженера из Англии - Фрэнка Уитла, который предложил первые идеи по созданию реактивного двигателя и получил на них свой патент в конце XIX века.

Первые реактивные двигатели

Впервые разработкой реактивного двигателя в России занялись в начале 20 столетия. Теорию движения реактивных аппаратов и ракетной техники, способных развить сверхзвуковую скорость, выдвинул известный российский ученый К. Э. Циолковский. Воплотить эту задумку в жизнь удалось талантливому конструктору А. М. Люльке. Именно он создал проект первого в СССР реактивного самолета, работающего с помощью реактивной турбины. Первые реактивные самолеты были созданы немецкими инженерами. Создание проектов и производство проводились тайно на замаскированных заводах. Гитлер со своей идеей стать мировым правителем, подключал лучших конструкторов Германии для производства мощнейшего оружия, в том числе и высокоскоростных самолетов. Наиболее успешным из них стал первый немецкий реактивный самолет «Мессершмитт-262». Этот летательный аппарат стал первым в мире, который успешно вынес все испытания, свободно поднялся в воздух и стал после этого выпускаться серийно.

Самолет обладал такими особенностями:

  • Аппарат имел два турбореактивных двигателя.
  • В носовой части располагался радиолокатор.
  • Максимальная скорость самолета достигала 900 км/час.

Благодаря всем этим показателям и конструктивным особенностям первый реактивный летательный аппарат «Мессершмитт-262» был грозным средством борьбы против других самолетов.

Прототипы современных авиалайнеров

В послевоенное время российскими конструкторами были созданы реактивные самолеты, ставшие в дальнейшем прототипами современных авиалайнеров.

И-250, более известный как легендарный МиГ-13, - истребитель, над которым трудился А. И. Микоян. Первый полет был произведен весной 1945 года, на то время реактивный истребитель показал рекордную скорость, достигшую 820 км/час. Запущены были в производство реактивные самолеты МиГ-9 и Як-15 .

В апреле 1945 года впервые в небо поднялся реактивный самолет П. О. Сухого - Су-5, поднимающийся и летающий за счет воздушно-реактивного мотокомпрессорного и поршневого двигателя, расположенного в хвостовой части конструкции.

После окончания войны и капитуляции фашистской Германии Советскому Союзу в качестве трофеев достались немецкие самолеты с реактивными двигателями JUMO-004 и BMW-003.

Первые мировые прототипы

Разработкой, тестированием новых авиалайнеров и их производством занимались не только немецкие и советские конструкторы. Инженерами США, Италии, Японии, Великобритании также было создано немало успешных проектов, применяемых реактивное движение в технике. К числу первых разработок с различными типами двигателей можно отнести:

  • Не-178 - немецкий самолет с турбореактивной силовой установкой, поднявшийся в воздух в августе 1939 года.
  • GlosterE. 28/39 - летательный аппарат родом из Великобритании, с мотором турбореактивного типа, впервые поднялся в небо в 1941 году.
  • Не-176 - истребитель, созданный в Германии с применением ракетного двигателя, осуществил свой первый полет в июле 1939 года.
  • БИ-2 - первый советский летательный аппарат, который приводился в движение посредством ракетной силовой установки.
  • CampiniN.1 - реактивный самолет, созданный в Италии, ставший первой попыткой итальянских конструкторов отойти от поршневого аналога.
  • Yokosuka MXY7 Ohka («Ока») с мотором Tsu-11 - японский истребитель-бомбардировщик, так называемый одноразовый летательный аппарат с пилотом-камикадзе на борту.

Использование реактивного движения в технике послужило резким толчком для быстрого создания следующих реактивных летательных аппаратов и дальнейшего развития военного и гражданского самолетостроения.

  1. GlosterMeteor - воздушно-реактивный истребитель, изготовленный в Великобритании в 1943 году, сыграл существенную роль во Второй Мировой войне, а после ее завершения выполнял задачу перехватчика немецких ракет «Фау-1».
  2. LockheedF-80 - реактивный летательный аппарат, произведенный в США с применением мотора типа AllisonJ. Эти самолеты не раз участвовали в японско-корейской войне.
  3. B-45 Tornado - прототип современных американских бомбардировщиков B-52, созданный в 1947 году.
  4. МиГ-15 - последователь признанного реактивного истребителя МиГ-9, который активно участвовал в военном конфликте в Корее, был произведен в декабре 1947 г.
  5. Ту-144 - первый советский сверхзвуковой воздушно-реактивный пассажирский самолет.

Современные реактивные аппараты

С каждым годом авиалайнеры совершенствуются, ведь конструкторы со всего мира работают над тем, чтобы создавать аппараты нового поколения, способные летать со скоростью звука и на сверхзвуковых скоростях. Сейчас существуют лайнеры, способные вмещать большое количество пассажиров и грузов, обладающие огромными размерами и невообразимой скоростью свыше 3000 км/час, военная авиатехника, оборудованная современной боевой экипировкой.

Но среди этого многообразия имеются несколько конструкций реактивных самолетов-рекордсменов:

  1. Airbus A380 - самый вместительный аппарат, способный принять на своем борту 853 пассажира, что обеспечено двухпалубной конструкцией. Он же по совместительству один из роскошных и дорогостоящих авиалайнеров современности. Самый крупный пассажирский лайнер в воздухе.
  2. Boeing 747 - более 35 лет считался самым вместительным двухэтажным лайнером и мог перевозить 524 пассажира.
  3. АН-225 «Мрия» - грузовой летательный аппарат, который может похвастаться грузоподъемностью в 250 тонн.
  4. LockheedSR-71 - реактивный самолет, достигающий во время полета скорости 3529 км/час.

Авиационные исследования не стоят на месте, потому как реактивные самолеты - это основа стремительно развивающейся современной авиации. Сейчас проектируется несколько западных и российских пилотируемых, пассажирских, беспилотных авиалайнеров с реактивными двигателями, выпуск которых запланирован на ближайшие несколько лет.

К российским инновационным разработкам будущего можно отнести истребитель 5-го поколения ПАК ФА - Т-50, первые экземпляры которого поступят в войска предположительно в конце 2017 или начале 2018 года после испытания нового реактивного двигателя.

Природа - пример реактивного движения

Реактивный принцип движения изначально был подсказан самой природой. Его действием пользуются личинки некоторых видов стрекоз, медузы, многие моллюски - морские гребешки, каракатицы, осьминоги, кальмары. Они применяют своеобразный «принцип отталкивания». Каракатицы втягивают воду и выбрасывают ее так стремительно, что сами при этом делают рывок вперед. Кальмары, используя этот способ, могут достигать скорости до 70 километров в час. Именно поэтому такой способ передвижения позволил назвать кальмаров "биоло-гическими ракетами". Инженеры уже изобрели двигатель, работающий по принципу движений кальмара. Одним из примеров применения реактивного движения в природе и технике является водомет.

Это устройство, которое обеспечивает движение с помощью силы воды, выбрасываемой под сильным напором. В устройство вода закачивается в камеру, а затем выпускается из нее через сопло, а судно движется в обратном выбросу струи направлении. Вода затягивается с помощью двигателя, работающего на дизеле или бензине.

Примеры реактивного движения предлагает нам и мир растений. Среди них попадаются виды, которые используют такое движение для распространения семян, например, бешеный огурец. Только внешне это растение подобно привычным для нас огурцам. А характеристику «бешеный» оно получило из-за странного способа размножения. Дозревая, плоды отскакивают от плодоножек. В итоге открывается отверстие, через которое огурец стреляет веществом, содержащим подходящие для прорастания семена, применяя реактивность. А сам огурец при этом отскакивает до двенадцати метров в сторону, обратную выстрелу.

Проявление в природе и технике реактивного движения подвластно одним и тем же законам мироздания. Человечество все больше использует эти законы для достижения своих целей не только в атмосфере Земли, но и на просторах космоса, и реактивное движение является этому ярким примером.

Реактивное движение в природе и в технике - весьма распространенное явление. В природе оно возникает, когда одна часть тела отделяется с определенной скоростью от некоторой другой части. При этом реактивная сила появляется без взаимодействия данного организма с внешними телами.

Для того чтобы понять, о чем идет речь, лучше всего обратиться к примерам. в природе и технике многочисленны. Сначала мы поговорим о том, как его используют животные, а затем о том, как оно применяется в технике.

Медузы, личинки стрекоз, планктон и моллюски

Многие, купаясь в море, встречали медуз. В Черном море их, во всяком случае, хватает. Однако не все задумывались, что передвигаются медузы как раз с помощью реактивного движения. К этому же способу прибегают и личинки стрекоз, а также некоторые представители морского планктона. КПД беспозвоночных морских животных, которые используют его, зачастую намного выше, чем у технических изобретений.

Многие моллюски передвигаются интересующим нас способом. В качестве примера можно привести каракатиц, кальмаров, осьминогов. В частности, морской моллюск-гребешок способен двигаться вперед, используя реактивную струю воды, которая выбрасывается из раковины, когда ее створки резко сжимаются.

И это лишь несколько примеров из жизни животного мира, которые можно привести, раскрывая тему: "Реактивное движение в быту, природе и технике".

Как передвигается каракатица

Весьма интересна в этом отношении и каракатица. Подобно множеству головоногих моллюсков, она передвигается в воде, используя следующий механизм. Через особую воронку, находящуюся впереди тела, а также через боковую щель каракатица забирает воду в свою жаберную полость. Затем она ее энергично выбрасывает через воронку. Трубку воронки каракатица направляет назад или вбок. Движение при этом может осуществляться в разные стороны.

Способ, который использует сальпа

Любопытен и способ, который использует сальпа. Так называется морское животное, имеющее прозрачное тело. Сальпа при движении втягивает воду, используя для этого переднее отверстие. Вода оказывается в широкой полости, а внутри нее по диагонали расположены жабры. Отверстие закрывается тогда, когда сальпа делает большой глоток воды. Ее поперечные и продольные мускулы сокращаются, сжимается все тело животного. Сквозь заднее отверстие вода выталкивается наружу. Животное двигается вперед благодаря реакции вытекающей струи.

Кальмары - "живые торпеды"

Самый большой интерес представляет, пожалуй, реактивный двигатель, который есть у кальмара. Это животное считается наиболее крупным представителем беспозвоночных, обитающим на больших океанских глубинах. В реактивной навигации кальмары достигли настоящего совершенства. Даже тело этих животных напоминает ракету своими внешними формами. Вернее сказать, это ракета копирует кальмара, так как именно ему принадлежит бесспорное первенство в этом деле. Если нужно передвигаться медленно, животное использует для этого большой ромбовидный плавник, который время от времени изгибается. Если же необходим быстрый бросок, на помощь приходит реактивный двигатель.

Со всех сторон тело моллюска окружает мантия - мышечная ткань. Практически половина всего объема тела животного приходится на объем ее полости. Кальмар использует мантийную полость для движения, засасывая воду внутрь нее. Затем он резко выбрасывает набранную струю воды сквозь узкое сопло. В результате этого он двигается толчками назад с большой скоростью. При этом кальмар складывает все свои 10 щупалец в узел над головой для того, чтобы приобрести обтекаемую форму. В составе сопла есть особый клапан, и мышцы животного могут поворачивать его. Тем самым направление движения меняется.

Впечатляющая скорость движения кальмара

Нужно сказать, что двигатель кальмара весьма экономичен. Скорость, которую он способен развивать, может достигать 60-70 км/ч. Некоторые исследователи даже полагают, что она может доходить до 150 км/ч. Как вы видите, кальмар не зря зовется "живой торпедой". Он может поворачивать в нужную сторону, изгибая вниз, вверх, влево или вправо щупальца, сложенные пучком.

Как кальмар управляет движением

Так как по сравнению с размерами самого животного руль очень велик, для того чтобы кальмар мог легко избежать столкновения с препятствием, даже двигаясь с максимальной скоростью, достаточно лишь незначительного движения руля. Если его резко повернуть, животное тут же помчится в обратную сторону. Кальмар изгибает назад конец воронки и в результате этого может скользить уже головой вперед. Если он выгнет ее вправо, он будет отброшен влево реактивным толчком. Однако когда плыть необходимо быстро, воронка всегда находится прямо между щупальцами. Животное в этом случае мчится хвостом вперед, подобно бегу рака-скорохода, если бы он обладал резвостью скакуна.

В случае когда спешить не требуется, каракатицы и кальмары плавают, ундулируя при этом плавниками. Спереди назад пробегают по ним миниатюрные волны. Кальмары и каракатицы грациозно скользят. Они лишь время от времени подталкивают себя струей воды, которая выбрасывается из-под их мантии. Отдельные толчки, которые моллюск получает при извержении струй воды, в такие моменты хорошо заметны.

Летающий кальмар

Некоторые головоногие способны ускоряться до 55 км/ч. Кажется, никто не осуществлял прямых измерений, однако такую цифру мы можем назвать, основываясь на дальности и скорости полета летающих кальмаров. Оказывается, существуют и такие. Кальмар стенотевтис является лучшим пилотом из всех моллюсков. Английские моряки именуют его летающим кальмаром (флайинг-сквид). Это животное, фото которого представлено выше, имеет небольшие размеры, примерно с селедку. Он так стремительно преследует рыб, что часто выскакивает из воды, проносясь стрелой над ее поверхностью. Такую уловку он использует и в случае, когда ему угрожает опасность от хищников - макрелей и тунцов. Развив максимальную реактивную тягу в воде, кальмар стартует в воздух, а затем пролетает более 50 метров над волнами. При его полета находится так высоко, что часто летающие кальмары попадают на палубы судов. Высота 4-5 метров для них - отнюдь не рекорд. Иногда летающие кальмары взлетают даже выше.

Доктор Рис, исследователь моллюсков из Великобритании, в своей научной статье описал представителя этих животных, длина тела которого составляла всего 16 см. Однако при этом он смог пролететь изрядное расстояние по воздуху, после чего приземлился на мостик яхты. А высота этого мостика составляла практически 7 метров!

Бывают случаи, когда на корабль обрушивается сразу множество летающих кальмаров. Требиус Нигер, античный писатель, однажды рассказал печальную историю о судне, которое как будто бы не смогло выдержать тяжесть этих морских животных и затонуло. Интересно, что кальмары способны взлетать даже без разгона.

Летающие осьминоги

Способностью летать обладают также осьминоги. Жан Верани, французский натуралист, наблюдал, как один из них разогнался в своем аквариуме, а затем внезапно выскочил из воды. Животное описало в воздухе дугу примерно в 5 метров, а затем плюхнулось в аквариум. Осьминог, набирая необходимую для прыжка скорость, двигался не только благодаря реактивной тяге. Он также греб своими щупальцами. Осьминоги мешковаты, поэтому они плавают хуже кальмаров, однако в критические минуты и эти животные способны дать фору лучшим спринтерам. Работники Калифорнийского аквариума хотели сделать фото осьминога, который атакует краба. Однако спрут, бросаясь на свою добычу, развивал такую скорость, что фотографии даже при использовании специального режима оказывались смазанными. Это означает, что бросок длился считанные доли секунды!

Однако осьминоги обычно плавают довольно медленно. Ученый Джозеф Сайнл, который исследовал миграции спрутов, выяснил, что осьминог, размер которого составляет 0,5 м, плывет со средней скоростью примерно 15 км/ч. Каждая струя воды, которую он выбрасывает из воронки, продвигает его вперед (точнее сказать, назад, поскольку он плывет задом наперед) где-то на 2-2,5 м.

"Бешеный огурец"

Реактивное движение в природе и в технике можно рассматривать и используя для его иллюстрации примеры из мира растений. Один из самых известных - созревшие плоды так называемого Они отскакивают от плодоножки при малейшем прикосновении. Затем из образовавшегося в результате этого отверстия с большой силой выбрасывается специальная клейкая жидкость, в которой находятся семена. Сам огурец отлетает в противоположную сторону на расстояние до 12 м.

Закон сохранения импульса

Обязательно следует рассказать и о нем, рассматривая реактивное движение в природе и в технике. Знание позволяет нам изменять, в частности, нашу собственную скорость перемещения, если мы находимся в открытом пространстве. К примеру, вы сидите в лодке и у вас с собой есть несколько камней. Если вы будете бросать их в определенную сторону, движение лодки будет осуществляться в противоположном направлении. В космическом пространстве также действует этот закон. Однако там с этой целью применяют

Какие еще можно отметить примеры реактивного движения в природе и технике? Очень хорошо закон сохранения импульса иллюстрируется на примере ружья.

Как известно, выстрел из него всегда сопровождается отдачей. Допустим, вес пули был бы равен весу ружья. В этом случае они бы разлетелись в стороны с одной и той же скоростью. Отдача бывает потому, что создается реактивная сила, так как имеется отбрасываемая масса. Благодаря этой силе обеспечивается движение как в безвоздушном пространстве, так и в воздухе. Чем больше скорость и масса истекающих газов, тем сила отдачи, которую ощущает наше плечо, больше. Соответственно, реактивная сила тем выше, чем сильнее реакция ружья.

Мечты о полетах в космос

Реактивное движение в природе и в технике вот уже долгие годы является источником новых идей для ученых. Много столетий человечество грезило о полетах в космос. Применение реактивного движения в природе и технике, нужно полагать, отнюдь не исчерпало себя.

А началось все с мечты. Писатели-фантасты несколько веков назад предлагали нам различные средства, как достигнуть этой желанной цели. В 17 веке Сирано де Бержерак, французский писатель, создал рассказ о полете на Луну. Его герой добрался до спутника Земли, используя железную повозку. Над этой конструкцией он постоянно подбрасывал сильный магнит. Повозка, притягиваясь к нему, поднималась над Землей все выше и выше. В конце концов, она достигла Луны. Другой известный персонаж, барон Мюнхгаузен, залез на Луну по стеблю боба.

Конечно, в это время еще было мало известно о том, как применение реактивного движения в природе и технике способно облегчить жизнь. Но полет фантазии, безусловно, открывал новые горизонты.

На пути к выдающемуся открытию

В Китае в конце 1 тысячелетия н. э. изобрели реактивное движение, приводящее в действие ракеты. Последние были просто бамбуковыми трубками, которые были начинены порохом. Эти ракеты запускались ради забавы. Реактивный двигатель использовался в одном из первых проектов автомобилей. Эта идея принадлежала Ньютону.

О том, как реактивное движение в природе и в технике возникает, задумывался и Н.И. Кибальчич. Это русский революционер, автор первого проекта реактивного летательного аппарата, который предназначен для полета на нем человека. Революционер, к сожалению, был казнен 3 апреля 1881 года. Кибальчича обвинили в том, что он участвовал в покушении на Александра II. Уже в тюрьме, в ожидании исполнения смертного приговора, он продолжал изучать такое интересное явление, как реактивное движение в природе и в технике, возникающее при отделении части объекта. В результате этих изысканий он разработал свой проект. Кибальчич писал, что эта идея поддерживает его в его положении. Он готов спокойно встретить свою смерть, зная, что столь важное открытие не погибнет вместе с ним.

Реализация идеи полета в космос

Проявление реактивного движения в природе и технике продолжил изучать К. Э. Циолковский (фото его представлено выше). Еще в начале 20 века этот великий русский ученый предложил идею использования ракет в целях космических полетов. Его статья, посвященная этому вопросу, появилась в 1903 году. В ней было представлено математическое уравнение, ставшее важнейшим для космонавтики. Оно известно в наше время как "формула Циолковского". Это уравнение описывало движение тела, имеющего переменную массу. В своих дальнейших трудах он представил схему ракетного двигателя, работающего на жидком топливе. Циолковский, изучая использование реактивного движения в природе и технике, разработал многоступенчатую конструкцию ракеты. Ему также принадлежит идея о возможности создания на околоземной орбите целых космических городов. Вот к каким открытиям пришел ученый, изучая реактивное движение в природе и технике. Ракеты, как показал Циолковский, - это единственные аппараты, которые могут преодолеть Ракету он определил как механизм, имеющий реактивный двигатель, который использует находящееся на нем горючее и окислитель. Этот аппарат трансформирует химическую энергию топлива, которая становится кинетической энергией газовой струи. Сама ракета при этом начинает двигаться в обратном направлении.

Наконец, ученые, изучив реактивное движение тел в природе и технике, перешли к практике. Предстояла масштабная задача реализации давней мечты человечества. И группа советских ученых, возглавляемая академиком С. П. Королевым, справилась с ней. Она осуществила идею Циолковского. Первый искусственный спутник нашей планеты был запущен в СССР 4 октября 1957 г. Естественно, при этом использовалась ракета.

Ю. А. Гагарин (на фото выше) был человеком, которому выпала честь первым осуществить полет в космическом пространстве. Это важное для мира событие произошло 12 апреля 1961 года. Гагарин на корабле-спутнике "Восток" облетел весь земной шар. СССР был первым государством, ракеты которого достигли Луны, облетели вокруг нее и сфотографировали сторону, невидимую с Земли. Кроме того, и на Венере впервые побывали именно русские. Они доставили на поверхность этой планеты научные приборы. Американский астронавт Нил Армстронг - первый человек, побывавший на поверхности Луны. Он высадился на нее 20 июля 1969 года. В 1986 году "Вега-1" и "Вега-2" (корабли, принадлежащие СССР) исследовали с близкого расстояния комету Галлея, которая приближается к Солнцу всего лишь раз в 76 лет. Изучение космоса продолжается…

Как вы видите, очень важной и полезной наукой является физика. Реактивное движение в природе и технике - это лишь один из интересных вопросов, которые рассматриваются в ней. А достижения этой науки весьма и весьма значительны.

Как в наши дни используется реактивное движение в природе и в технике

В физике в последние несколько столетий были сделаны особенно важные открытия. В то время как природа остается практически неизменной, техника развивается стремительными темпами. В наше время принцип реактивного движения широко применяется не только различными животными и растениями, но также в космонавтике и в авиации. В космическом пространстве отсутствует среда, которую тело могло бы использовать для взаимодействия, чтобы изменить модуль и направление своей скорости. Именно поэтому для полетов в безвоздушном пространстве можно использовать лишь ракеты.

Сегодня активно используется реактивное движение в быту, природе и технике. Оно уже не является загадкой, как раньше. Однако человечество не должно останавливаться на достигнутом. Впереди новые горизонты. Хочется верить, что реактивное движение в природе и технике, кратко охарактеризованное в статье, вдохновит кого-то на новые открытия.

Реактивное движение в природе и технике

РЕФЕРАТ ПО ФИЗИКЕ


Реактивное движение - движение, возникающее при отделении от тела с некоторой скоростью какой-либо его части.

Реактивная сила возникает без какого-либо взаимодействия с внешними телами.

Применение реактивного движения в природе

Многие из нас в своей жизни встречались во время купания в море с медузами. Во всяком случае, в Черном море их вполне хватает. Но мало кто задумывался, что и медузы для передвижения пользуются реактивным движением. Кроме того, именно так передвигаются и личинки стрекоз, и некоторые виды морского планктона. И зачастую КПД морских беспозвоночных животных при использовании реактивного движения гораздо выше, чем у техноизобретений.

Реактивное движение используется многими моллюсками – осьминогами, кальмарами, каракатицами. Например, морской моллюск-гребешок движется вперед за счет реактивной силы струи воды, выброшенной из раковины при резком сжатии ее створок.

Осьминог


Каракатица

Каракатица, как и большинство головоногих моллюсков, движется в воде следующим способом. Она забирает воду в жаберную полость через боковую щель и особую воронку впереди тела, а затем энергично выбрасывает струю воды через воронку. Каракатица направляет трубку воронки в бок или назад и стремительно выдавливая из неё воду, может двигаться в разные стороны.

Сальпа - морское животное с прозрачным телом, при движении принимает воду через переднее отверстие, причем вода попадает в широкую полость, внутри которой по диагонали натянуты жабры. Как только животное сделает большой глоток воды, отверстие закрывается. Тогда продольные и поперечные мускулы сальпы сокращаются, все тело сжимается, и вода через заднее отверстие выталкивается наружу. Реакция вытекающей струи толкает сальпу вперед.

Наибольший интерес представляет реактивный двигатель кальмара. Кальмар является самым крупным беспозвоночным обитателем океанских глубин. Кальмары достигли высшего совершенства в реактивной навигации. У них даже тело своими внешними формами копирует ракету (или лучше сказать – ракета копирует кальмара, поскольку ему принадлежит в этом деле бесспорный приоритет). При медленном перемещении кальмар пользуется большим ромбовидным плавником, периодически изгибающимся. Для быстрого броска он использует реактивный двигатель. Мышечная ткань – мантия окружает тело моллюска со всех сторон, объем ее полости составляет почти половину объема тела кальмара. Животное засасывает воду внутрь мантийной полости, а затем резко выбрасывает струю воды через узкое сопло и с большой скоростью двигается толчками назад. При этом все десять щупалец кальмара собираются в узел над головой, и он приобретает обтекаемую форму. Сопло снабжено специальным клапаном, и мышцы могут его поворачивать, изменяя направление движения. Двигатель кальмара очень экономичен, он способен развивать скорость до 60 – 70 км/ч. (Некоторые исследователи считают, что даже до 150 км/ч!) Недаром кальмара называют “живой торпедой”. Изгибая сложенные пучком щупальца вправо, влево, вверх или вниз, кальмар поворачивает в ту или другую сторону. Поскольку такой руль по сравнению с самим животным имеет очень большие размеры, то достаточно его незначительного движения, чтобы кальмар, даже на полном ходу, легко мог увернуться от столкновения с препятствием. Резкий поворот руля – и пловец мчится уже в обратную сторону. Вот изогнул он конец воронки назад и скользит теперь головой вперед. Выгнул ее вправо – и реактивный толчок отбросил его влево. Но когда нужно плыть быстро, воронка всегда торчит прямо между щупальцами, и кальмар мчится хвостом вперед, как бежал бы рак – скороход, наделенный резвостью скакуна.

Если спешить не нужно, кальмары и каракатицы плавают, ундулируя плавниками, – миниатюрные волны пробегают по ним спереди назад, и животное грациозно скользит, изредка подталкивая себя также и струей воды, выброшенной из-под мантии. Тогда хорошо заметны отдельные толчки, которые получает моллюск в момент извержения водяных струй. Некоторые головоногие могут развивать скорость до пятидесяти пяти километров в час. Прямых измерений, кажется, никто не производил, но об этом можно судить по скорости и дальности полета летающих кальмаров. И такие, оказывается, есть таланты в родне у спрутов! Лучший пилот среди моллюсков – кальмар стенотевтис. Английские моряки называют его – флайинг-сквид («летающий кальмар»). Это небольшое животное размером с селедку. Он преследует рыб с такой стремительностью, что нередко выскакивает из воды, стрелой проносясь над ее поверхностью. К этой уловке он прибегает и спасая свою жизнь от хищников – тунцов и макрелей. Развив в воде максимальную реактивную тягу, кальмар-пилот стартует в воздух и пролетает над волнами более пятидесяти метров. Апогей полета живой ракеты лежит так высоко над водой, что летающие кальмары нередко попадают на палубы океанских судов. Четыре-пять метров – не рекордная высота, на которую поднимаются в небо кальмары. Иногда они взлетают еще выше.

Английский исследователь моллюсков доктор Рис описал в научной статье кальмара (длиной всего в 16 сантиметров), который, пролетев по воздуху изрядное расстояние, упал на мостик яхты, возвышавшийся над водой почти на семь метров.

Случается, что на корабль сверкающим каскадом обрушивается множество летающих кальмаров. Античный писатель Требиус Нигер поведал однажды печальную историю о корабле, который будто бы даже затонул под тяжестью летающих кальмаров, упавших на его палубу. Кальмары могут взлетать и без разгона.

Осьминоги тоже умеют летать. Французский натуралист Жан Верани видел, как обычный осьминог разогнался в аквариуме и вдруг задом вперед неожиданно выскочил из воды. Описав в воздухе дугу длиной метров в пять, он плюхнулся обратно в аквариум. Набирая скорость для прыжка, осьминог двигался не только за счет реактивной тяги, но и греб щупальцами.
Мешковатые осьминоги плавают, конечно, хуже кальмаров, но в критические минуты и они могут показать рекордный для лучших спринтеров класс. Сотрудники Калифорнийского аквариума пытались сфотографировать осьминога, атакующего краба. Спрут бросался на добычу с такой быстротой, что на пленке, даже при съемке на самых больших скоростях, всегда оказывались смазки. Значит, бросок длился сотые доли секунды! Обычно же осьминоги плавают сравнительно медленно. Джозеф Сайнл, изучавший миграции спрутов, подсчитал: осьминог размером в полметра плывет по морю со средней скоростью около пятнадцати километров в час. Каждая струя воды, выброшенная из воронки, толкает его вперед (вернее, назад, так как осьминог плывет задом наперед) на два – два с половиной метра.

Реактивное движение можно встретить и в мире растений. Например, созревшие плоды “бешеного огурца” при самом легком прикосновении отскакивают от плодоножки, а из образовавшегося отверстия с силой выбрасывается клейкая жидкость с семенами. Сам огурец при этом отлетает в противоположном направлении до 12 м.

Зная закон сохранения импульса можно изменять собственную скорость перемещения в открытом пространстве. Если вы находитесь в лодке и у вас есть несколько тяжёлых камней, то бросая камни в определённую сторону вы будете двигаться в противоположном направлении. То же самое будет и в космическом пространстве, но там для этого используют реактивные двигатели.

Каждый знает, что выстрел из ружья сопровождается отдачей. Если бы вес пули равнялся бы весу ружья, они бы разлетелись с одинаковой скоростью. Отдача происходит потому, что отбрасываемая масса газов создаёт реактивную силу, благодаря которой может быть обеспечено движение как в воздухе, так и в безвоздушном пространстве. И чем больше масса и скорость истекающих газов, тем большую силу отдачи ощущает наше плечо, чем сильнее реакция ружья, тем больше реактивная сила.

Применение реактивного движения в технике

В течение многих веков человечество мечтало о космических полётах. Писатели-фантасты предлагали самые разные средства для достижения этой цели. В XVII веке появился рассказ французского писателя Сирано де Бержерака о полёте на Луну. Герой этого рассказа добрался до Луны в железной повозке, над которой он всё время подбрасывал сильный магнит. Притягиваясь к нему, повозка всё выше поднималась над Землёй, пока не достигла Луны. А барон Мюнхгаузен рассказывал, что забрался на Луну по стеблю боба.

В конце первого тысячелетия нашей эры в Китае изобрели реактивное движение, которое приводило в действие ракеты - бамбуковые трубки, начиненные порохом, они также использовались как забава. Один из первых проектов автомобилей был также с реактивным двигателем и принадлежал этот проект Ньютону

Автором первого в мире проекта реактивного летательного аппарата, предназначенного для полета человека, был русский революционер – народоволец Н.И. Кибальчич. Его казнили 3 апреля 1881 г. за участие в покушении на императора Александра II. Свой проект он разработал в тюрьме после вынесения смертного приговора. Кибальчич писал: “Находясь в заключении, за несколько дней до своей смерти я пишу этот проект. Я верю в осуществимость моей идеи, и эта вера поддерживает меня в моем ужасном положении…Я спокойно встречу смерть, зная, что моя идея не погибнет вместе со мною”.

Идея использования ракет для космических полётов была предложена ещё в начале нашего столетия русским учёным Константином Эдуардовичем Циолковским. В 1903 году появилась в печати статья преподавателя калужской гимназии К.Э. Циолковского “Исследование мировых пространств реактивными приборами”. В этой работе содержалось важнейшее для космонавтики математическое уравнение, теперь известное как “формула Циолковского”, которое описывало движение тела переменной массы. В дальнейшем он разработал схему ракетного двигателя на жидком топливе, предложил многоступенчатую конструкцию ракеты, высказал идею о возможности создания целых космических городов на околоземной орбите. Он показал, что единственный аппарат, способный преодолеть силу тяжести - это ракета, т.е. аппарат с реактивным двигателем, использующим горючее и окислитель, находящиеся на самом аппарате.