Конструкция основных схем камер сгорания. Конструктивные особенности камеры сгорания и сопла. По способу смесеобразования

Главное достоинство дизельных двигателей - это низкие затраты на топливо, поскольку моторы этого типа имеют малые удельные расходы топлива на основных эксплуатационных режимах, да и само горючее во многих странах заметно дешевле бензина.

К числу недостатков дизеля по сравнению с бензиновыми двигателя ми относятся: сравнительно низкие мощностные показатели, более дорогая в изготовлении и обслуживании топливная аппаратура, худшие пусковые качества, повышенный выброс некоторых токсичных компонентов с отработавшими газами, повышенный уровень шума.

Экономические и экологические показатели автомобильного дизельного двигателя в первую очередь зависят от особенностей рабочего процесса и, в частности, от типа камеры сгорания, системы впрыскивания топлива. Камеры сгорания дизельного двигателя делятся на разделенные (вихрекамерные и форкамерные), полуразделенные и неразделенные .

Дизельные двигатели с неразделенной камерой иногда называют двигателям и с непосредственным впрыском.

Дизельные двигатели с разделенной камерой сгорания обычно устанавливаются на грузовики малой грузоподъемности и легковые автомобили. Это определяется необходимостью снижения уровня шума и меньшей жесткостью работы. При подходе поршня к ВМТ воздух из основного объема камеры сгорания вытесняется в дополнительный, создавая в нем интенсивную турбулизацию заряда, что способствует лучшему перемешиванию капель топлива с воздухом. Недостатком дизельных двигателей с разделенной камерой сгорания являются: некоторое увеличение расхода топлива вследствие повышения потерь в охлаждающую среду из-за увеличенной поверхности камеры сгорания, больших потерь на перетекание воздушного заряда в дополнительную камеру и горящей смеси обратно в цилиндр. Кроме того, ухудшаются пусковые качества.

Дизельные двигатели с неразделенной камерой сгорания имеют низкие расходы топлива и легче запускаются. Недостатком их является повышенная жесткость работы и соответственно - высокий уровень шума.

Для полного сгорания топлива изготовитель выбирает оптимальное соотношение между количеством сопловых отверстий у форсунки и интенсивностью вихревого движения заряда в цилиндре - так, чтобы струи топлива полностью охватили весь воздушный заряд. Чем меньше сопловых отверстий, тем более интенсивным должно быть вращательное движение заряда. У четырехтактных дизельных двигателей вращательное движение воздуха во время хода впуска обеспечивается тангенциальным расположением впускного канала, наличием ширмы у клапана, винтовым (улиткообразным) каналом перед впускным клапаном. В процессе сжатия при подходе поршня к ВМТ воздух перетекает из надпоршневого пространства в камеру сгорания в поршне, увеличивая интенсивность вращательного движения свежего заряда. Поэтому при ремонте дизельных двигателей необходимо следить, чтобы зазор между днищем поршня и головкой цилиндров соответствовал заданной инструкцией величине. При большем зазоре интенсивность турбулизации заряда будет недостаточна, при меньшем на больших нагрузках может появиться стук поршня от его ударов по головке. Во время сборки дизельного двигателя этот зазор проверяется установкой свинцовых пластинок на днище поршня и прокруткой коленчатого вала после затяжки болтов крепления головки.

Пуск дизельного двигателя:

У дизельных двигателей с разделенной камерой сгорания (вихрекамерные или форкамерные) пусковые качества значительно хуже, чем у дизельных двигателей с неразделенной камерой.

Для облегчения пуска дизельные двигатели с разделенной камерой оснащаются электрическими свечами накаливания, устанавливаемыми в форкамеру или вихревую камеру. Реже свечи устанавливаются в дизельных двигателей с непосредственным впрыском.

Свечи бывают открытого и закрытого типа со спиралью накаливания или нагревательным элементом. Они выпускаются теми же фирмами, что и свечи зажигания. Кожух свечи располагается в камере сгорания дизельного двигателя так, чтобы конус распыленного топлива попадал только на его раскаленный наконечник.

В период, когда токсичность отработавших газов оценивалась по выбросу СО и СН (углеводородов), в широкой прессе отмечалось, что дизели имеют из всех ДВС наиболее низкую токсичность. Однако в дальнейшем, когда товарные бензины стали выпускаться без этиловой жидкости, а бензиновые двигатели начали оснащаться трехкомпонентными каталитическими нейтрализатор ами, снижающими содержание СО, СН, NОх на 90-95%, о низкой токсичности дизельных двигателей по сравнению с бензиновыми двигателями стали скромно умалчивать.

Повышенная токсичность дизелей определяется следующими факторами:

Первый из них - низкая эффективность каталитических нейтрализаторов . Это связано с тем, что степень сжатия, а следовательно, и степень расширения дизелей значительно выше, чем у бензиновых двигателей. Поэтому температура отработавших газов недостаточна для эффективной работы нейтрализаторов. В связи с этим не удается добиться снижения выброса оксидов азота, которые в несколько десятков раз более токсичны, чем СО.

Второй фактор - повышенный выброс на некоторых режимах , особенно во время прогрева, продуктов неполного сгорания с характерным неприятным запахом (акролеина, альдегидов и др.), многие из которых являются канцерогенами. Третий - частицы сажи являются носителями канцерогенов. Попадая в дыхательные пути, они вызывают раковые опухоли. Из-за того, что ни в одной из стран до сих пор нет быстродействующих газоанализаторов, нет и возможности нормировать их выброс. Поэтому законодатели используют косвенные показатели - ограничение выброса углеводородов и твердых частиц.

Основные причины повышенной токсичности и повышенного расхода топлива дизельных двигателей следующие:

Низкое качество топлива,

Нарушение работы системы топливоподачи (слишком низкий коэффициент избытка воздуха, неравномерная подача топлива по цилиндрам, смещение фаз впрыска, межцикловая неравномерность подачи топлива),

Повышенный расход масла на угар из-за износа деталей цилиндропоршневой группы,

В двигателях с турбонаддувом - слишком низкое давление наддува.

Одна из главных характеристик дизельного топлива - это его цетановое число, показывающее способность к самовоспламенению.

Оно определяется на одноцилиндровой установке сравнением со смесью эталонного топлива, подбираемого так, чтобы период задержки воспламенения был таким же, как и у испытуемого горючего. Величина цетанового числа должна быть не менее 45. Она зависит от химического состава топлива и наличия в нем специальных присадок. Увеличение цетанового числа достигается повышением содержания в топливе парафиновых углеводородов. При этом улучшаются пусковые качества, однако при цетановом числе 50...55 ухудшается полнота сгорания.

· Определение задачи камеры сгорания.

· Перечисление требований к горению.

· Описание принципа работы камеры сгорания.

· Утверждение, что низкая скорость распространения фронта пламени является причиной диффузии воздушного потока на входе камеры сгорания.

· Определение терминов «первичный поток» и «вторичный поток».

· Объяснение соотношений смеси топливо:первичный поток и топливо:вторичный поток.

· Описание изменений газовых параметров (p, t, v) в камере сгорания.

· Утверждение, что температура на выходе камеры сгорания находится в диапазоне от 1 000°Cдо 1 500°C.

· Название основных компонентов камеры сгорания и их задач.

· Описание системы трубчатой камеры сгорания, трубчато-кольцевой, кольцевой и камеры с поворотом потока и установление различий между ними.

· Описание принципов работы различных распылительных форсунок.

4.1. ЗАДАЧА КАМЕРЫ СГОРАНИЯ

Камера сгорания должна удерживать горючую смесь воздуха (поступающего из компрессора) и топлива (распыливаемого форсунками топливной системы) для обеспечения максимальной теплоотдачи при относительно постоянном давлении, чтобы подавать на вход турбины равномерно расширившийся, нагретый и ускоренный поток газов. Это непростая задача, но несмотря на это конструкция камер сгорания постоянно совершенствуется для обеспечения более эффективного использования топлива с меньшим загрязнением атмосферы.

Значение эффективности сгорания постоянно возрастает из-за повышения себестоимости топлива и повышение осознания общественностью опасности загрязнений атмосферы выхлопным дымом.

4.2. ДОПУСТИМЫЙ РОСТ ТЕМПЕРАТУРЫ

Существует лимит максимальной температуры газа на выходе камеры сгорания. Он обусловлен материалами, из которых изготовлены лопатки соплового аппарата и турбина. Небольшое превышение этого лимита будет означать возможное нарушение целостности турбины с вероятными катастрофическими последствиями.

4.3. ТРЕБУЕМЫЙ РОСТ ТЕМПЕРАТУРЫ

Современные материалы способны выдерживать температуру газа в камере сгорания 2 000°. На выходе из камеры сгорания температура газа должна быть снижена до 1 000°C- 1 500°C.

Учитывая, что воздух уже подогрет в результате сжатия в компрессоре примерно до температуры 600°C, для дальнейшего роста температуры необходимо добавить соответствующее количество топлива.

Это, разумеется, будет температура газов при работе двигателя на полной мощности. Для пониженных режимов работы потребуется меньший расход топлива в камеру сгорания для поддержания стабильного и эффективного горения в широком диапазоне условий эксплуатации двигателя.



4.4. СКОРОСТЬ РАСПРОСТРАНЕНИЯ ПЛАМЕНИ КЕРОСИНА

Воздух в камеру сгорания поступает приблизительно с той же скоростью, с которой он попадает в воздухозаборник двигателя, не редко скорость составляет 500 футов в секунду.

Скорость распространения пламени керосина – скорость, с которой передняя кромка факела перемещается по пару – составляет только один или два фута в секунду. Если горящий керосин поместить в воздушный поток, перемещающийся со скоростью 500 футов в секунду, он мгновенно сгорит.

Необходимо что-то сделать, чтобы замедлить воздушный поток после выхода компрессора и перед попаданием его в первичную зону – зону внутри камеры сгорания, где он смешивается с топливом и воспламеняется.

На рис. 4.1 показано как снижается скорость и повышается давление воздушного потока после выхода из компрессора и перед входом в камеру сгорания.

Фактически, давление в этой точке является самым высоким в двигателе. Снижение скорости, однако, все еще не достаточное. Необходимо осуществлять дальнейшее снижение скорости потока, чтобы не допустить срыва пламени.

На рис. 4.1 показано, как воздух поступает в первичную зону, проходит через носовую часть перед разделением на поток через перфорированный раструб и лопаточный завихритель.

Рис. 4.1. Разделение потока в камере сгорания

4.5. ПЕРВИЧНЫЙ ВОЗДУХ

Первичный воздух составляет 20% от потока, поступающего в камеру сгорания. Это воздух, который смешивается с топливом и горит.

Проходя через раструб и лопаточный завихритель, скорость потока снижается и начинается рециркуляция, требуемая, если пламя не поджигается.

4.6. ВТОРИЧНЫЙ ВОЗДУХ

Воздух, не попавший в носовую часть, проходит в пространство между жаровой трубой и воздушным корпусом. Часть этого воздуха попадает в жаровую трубу через отверстия для вторичного потока. Вторичный воздух, около 20% от общего количества, взаимодействует с первичным потоком, проходящим через завихритель, и образует тороидальный вихрь – область с низкой скоростью воздушного потока, напоминающий пончик или дымовое кольцо. Это стабилизирует и фиксирует факел и предотвращает перемещение его вдоль жаровой трубы из зоны распылительных форсунок.

Температура газов в центре первичной зоны достигает 2 000°C. Это слишком высокая температура для материалов сопловых лопаток и рабочих лопаток турбины, поэтому требуется дальнейшее понижение температуры газов до выхода из камеры сгорания.

Рис. 4.2. Камера сгорания раннего образца

4.7. ТРЕТИЧНЫЙ ВОЗДУХ

Оставшиеся 60% общего потока, третичный воздух, прогрессивно вводятся в жаровую трубу для охлаждения и разбавления газов до того, как они попадут в турбину. Третичный воздух используется для охлаждения газов в камере сгорания и стенок воздушного корпуса.

Камера сгорания на рис. 4.2 является одной из нескольких, которые применялись в ранних системах трубчатых камер. В более современных конструкциях используются различные методы охлаждения воздушного корпуса, называемые транспирационным охлаждением, когда воздушная пленка проходит между слоями, формирующими стенки воздушного корпуса.

4.8. КОМПОНЕНТЫ КАМЕРЫ СГОРАНИЯ

На рис. 4.2 показаны некоторые интересные компоненты ступенчатой камеры сгорания.

У большинства ГТД имеется только два воспламенителя . Фактически двигатель хорошо запускается и от одного воспламенителя, однако, имея только два необходимо найти средства распространения пускового пламени между камерами сгорания. Им является соединительное устройство (внутренняя трубка).

Стазу после поджига пламя в камере с воспламенителем вызывает там рост давления. Перепад давлений между данной камерой и сопряженной приводит в движение горючие газы, они проходят через соединительной устройство и поджигают смесь.

Этот процесс в двигателе продолжается по кругу, пока смеси по всех камерах не будут подожжены, когда давления в камерах сравняются, и поток через соединительное устройство не иссякнет.

Уплотнительное кольцо со стороны турбины допускает удлинение камеры сгорания из-за температурного расширения. Камера со стороны компрессора зафиксирована болтами и не может расширяться в этом направлении. Уплотнительное кольцо, поддерживающее герметичность газового тракта, допускает расширение камеры внутрь сопловой коробки – части двигателя непосредственно примыкающей к сопловым лопаткам .

Гофрированные соединения пропускают третичный поток в жаровую трубу, вызывая постепенное уменьшение температуры газов до попадания в сопловой аппарат.

4.9. КОНСТРУКЦИЯ ТРУБЧАТОЙ КАМЕРЫ СГОРАНИЯ

Конструкция прямолинейной трубчатой камеры сгорания была усовершенствована на базе оригинальной разработки сэра Франка Уиттла. Она использовалась на некоторых ранних двигателях с осевым потоком и до сих пор используется на двигателях с центробежными компрессорами, такими как Rolls-Royce Dart.

Она состоит из восьми или более камер, показанных на рис. 4.2, расположенных вокруг корпуса двигателя позади секции компрессора. Каждая камера представляет собой жаровую трубу с индивидуальным воздушным корпусом.

На рис. 4.3 показана система трубчатой камеры сгорания, аналогичная применяемой на Rolls-RoyceAvon, который был мощным (для того времени) двигателем с осевым компрессором, используемым на протяжении долгого времени для многих различных типов военных и коммерческих самолетов,

На рис. 4.3 хорошо видна носовая часть (заборник первичного воздуха), соединительное устройство и дренажные трубки .

Дренажные трубки предназначены для случая отказа на запуске, более известного как ложный запуск. Это происходит, когда смесь в камерах сгорания не воспламеняется во время старта.

В двигатель будет подано значительное количество топлива, и если его не удалить перед следующим запуском, получим очень длительный высокотемпературный и опасный выброс пламени из задней части двигателя.

Рис. 4.3. Система трубчатой камеры сгорания (основано на оригинальных чертежах фирмы Rolls-Royce)

4.10. СИСТЕМА ДРЕНАЖА ТОПЛИВА

В настоящее время известны два способа удаления топлива из двигателя. Первый – с помощью дренажной системы, второй – путём испарения локальных остатков в камерах сгорания и реактивном сопле. В дренажной системе применяются дренажные трубки, которые соединяют самую нижнюю часть каждой камеры с камерой, расположенной ниже.

Топливо, оставшееся после ложного запуска, будет стекать из верхней части двигателя в нижнюю камеру. Оказавшись в нижней камере, топливо будет удаляться через подпружиненный дренажный клапан, расположенный в положении «на 6 часов». Во время нормальной работы двигателя внутреннее давление удерживает клапан в закрытом положении.

Для испарения любых локальных остатков топлива из камер сгорания выполняется прокрутка двигателя в цикле продувки.

С помощью мотора стартера двигатель прокручивается в течение времени, соответствующего нормальному циклу полного запуска, с отключением подачи топлива ВД и системы зажигания. Камера сгорания будет продуваться сжатым воздухом, что способствует испарению любых остатков топлива.

4.11. КОНСТРУКЦИЯ ТРУБЧАТО-КОЛЬЦЕВОЙ КАМЕРЫ СГОРАНИЯ

Конструкция трубчато-кольцевой камеры сгорания, показанная на рис. 4.4, иногда называется турбо-кольцевой.

Рис. 4.4. Система трубчато-кольцевой камеры сгорания (основано на оригинальных чертежах Rolls-Royce)

Она отличается от системы трубчатой камеры тем, что не имеет индивидуальных воздушных корпусов для каждой жаровой трубы. В результате получается более компактное по размерам устройство, заключающее в общем воздушном корпусе несколько жаровых труб. Данная иллюстрация является одной из нескольких, на ней показан воспламенитель.

4.12. КОНСТРУКЦИЯ КОЛЬЦЕВОЙ КАМЕРЫ СГОРАНИЯ

Конструкция кольцевой камеры сгорания имеет только одну жаровую трубу, окруженную внешним и внутренним воздушными корпусами. Типичный пример такой камеры приведен на рис.4.5 и 4.5а.

Рис. 4.5. Кольцевая камера сгорания (основано на оригинальных чертежах Rolls-Royce)

Рис. 4.5а. Детализированное изображение кольцевой камеры сгорания (основано на оригинальных чертежах Rolls-Royce)

Система кольцевой камеры сгорания имеет несколько преимуществ над двумя остальными описанными ранее типами камер, из которых она и была создана:

a) Для той же выходной мощности длина кольцевой камеры составляет только 75% от длины трубчато-кольцевой камеры такого же диаметра.

b) Отсутствуют проблемы с распространением пламени.

c) По сравнению с трубчато-кольцевой системой площадь воздушного корпуса меньше, соответственно, требуется меньше охлаждающегося воздуха.

d) Эффективность сгорания увеличена до точки, где несгоревшее топливо фактически отсутствует, происходит окисление оксида углерода до нетоксичного диоксида углерода.

e) Происходит намного лучшее распределение давления газов, проходящих в турбину, поэтому передаваемая нагрузка более равномерная.

4.13. СООТНОШЕНИЕ ВОЗДУХ/ТОПЛИВО (СТЕХИОМЕТРИЧЕСКОЕ ОТНОШЕНИЕ)

Чтобы получить максимальную теплоотдачу, как указано в параграфе 4.1, нужно использовать химически правильное соотношение воздух/топливо 15:1. Если у поршневого двигателя такое соотношение может вызвать детонацию и нарушение работы, у ГТД таких проблем не возникает, т.к. отсутствуют благоприятные для них пиковые давления.

Топливо и воздух смешиваются и горят в первичной зоне в весовом соотношении 15 частей воздуха на 1 часть топлива. При добавлении вторичного и третичного потока смесь разбавляется, поэтому общее соотношение может составлять от 45:1 до 130:1.

4.14. ПОТЕРИ ДАВЛЕНИЯ В КАМЕРЕ

В параграфе 4.4 говорилось, что горение теоретически происходит при постоянном давлении. Фактически, как показано на рис. 1.5, существуют небольшие потери давления по тракту камеры сгорания.

Они вызваны необходимостью создавать правильное завихрение потока и смешение. Потери могут составлять от 3% до 8% от давления на входе камеры сгорания.

4.15. СТАБИЛЬНОСТЬ СГОРАНИЯ

При нормальных условиях работы двигателя горение поддерживается самостоятельно. Система зажигания может быть эффективно отключена при наборе двигателем самоподдерживающейся частоты – частоты после запуска, при которой двигатель может разгоняться без помощи мотора стартера.

Существуют определенные условия работы двигателя, для которых требуется зажигание, например, при срыве пламени – погасании пламени из-за различных ненормальных условий: при всасывании большого количества воды во время взлета с загрязненной ВПП.

Другой причиной погасания пламени может служить слишком бедная смесь. Такая ситуация может возникнуть при сбрасывании газа во время снижения, когда возникает низкий расход топлива при большом расходе воздуха.

Стабильность сгорания означает плавность горения и способность поддерживать его в широком диапазоне соотношений смеси и массовых расходов воздуха. На рис. 4.6 приведены ограничения по стабильности сгорания.

Из графиков на рис. 4.6 видно, что стабильность сгорания будет достигаться только между границами, которые постоянно сужаются с увеличением массового расхода воздуха. Диапазон между пределами обогащения и обеднения уменьшается с увеличением массового расхода воздуха до определенной точки погасания пламени.

Петля зажигания внутри границ зоны стабильность показывает, что инициировать горение сложнее, чем поддерживать его после зажигания.

Из этого следует, что при срыве пламени в двигателе на высокой скорости или большой высоте может потребоваться уменьшение обоих параметров до получения успешного повторного зажигания.

Рис. 4.6. Типичная петля стабильности сгорания

4.16. ПОВТОРНОЕ ЗАЖИГАНИЕ

Как говорилось ранее, способность двигателя к повторному зажиганию будет меняться, в зависимости от высоты и поступательной воздушной скорости самолета. На рис. 4.7 показан смысловой диапазон повторного зажигания, отражающий условия полета, в которых будет гарантировано повторное зажигание работоспособного двигателя.

Воздушный поток в двигателе будет вызывать его вращение (авторотацию), поэтому компрессор будет подавать достаточно воздуха, и требуется только открытие топливного крана ВД и активация системы зажигания.

Это получается с помощью выбора переключателя повторного зажигания, который функционирует отдельно от нормального цикла запуска.

Рис. 4.7. Диапазон повторного зажигания

4.17. ЭФФЕКТИВНОСТЬ СГОРАНИЯ

Эффективность сгорания – это эффективность, с которой камера сгорания извлекает потенциальную теплоту, фактически содержащуюся в топливе. Современные ГТД имеют очень эффективный цикл сгорания.

При работе на высокой мощности достижимая эффективность сгорания составляет 99%, а на малом газе она достигает 95%. Это показано на рис. 4.8. На рис. также показано полное соотношение воздух/топливо в нормальном диапазоне работы двигателя.

Рис. 4.8. Эффективность сгорания и соотношение воздух/топливо

4.18. ТОПЛИВНЫЕ РАСПЫЛИТЕЛЬНЫЕ ФОРСУНКИ

Высокая эффективность сгорания, описанная выше, во многом зависит от распылительных топливных форсунок, используемых в больших современных ГТД. Задачей форсунок является распыление или испарение топлива для обеспечения полного сгорания. Это непростая задача, учитывая скорость воздушного потока из компрессора и небольшое доступное расстояние для горения внутри камеры сгорания.

Другой проблемой являются относительно низкие давления, создаваемые топливным насосом ВД с приводом от двигателя во время запуска. Насосы с приводом от высокоскоростной коробки приводов во время запуска вращаются с минимальной скоростью и не способны на такой скорости создавать высокие давления (1 500 – 2 000 psi), требуемые для получения хорошего факела распыла, рис. 4.9.

Рис. 4.9. Факелы распыла топлива при различных давлениях

Хорошо видно, что отверстие фиксированного размера создает хороший факел распыла только при высоком давлении топлива. Для получения достаточной атомизации на запуске при низких давлениях топлива необходимо разработать определенные методы.

4.19. СИСТЕМА ВОЗДУШНОГО РАСПЫЛЕНИЯ

Одним из принципов получения требуемого факела распыла является дробление потока топлива высокоскоростным воздушным потоком – система воздушного распыления. Для этой системы требуются относительно низкие давления топлива, поэтому она может работать с использованием шестеренных насосов, которые намного легче и совершеннее плунжерных.

Рис. 4.10. Форсунка с воздушным распылением (основано на оригинальных чертежах фирмы Rolls-Royce)

4.20. СДВОЕННАЯ СИСТЕМА

Для отверстий подачи изменяемого сечения используется сдвоенная система, показанная на рис. 4.11. При низких давлениях топлива нагнетательный клапан закрывает основной канал подачи топлива к форсунке, и топливо подается только по первичному (пусковому) каналу.

Пусковой канал питает первичное отверстие, которое имеет маленькое сечение и способно формировать хороший факел распыла при низких давлениях. Когда во время запуска двигатель разгоняется, давление топлива возрастает и открывает нагнетательный клапан, пропуская топливо через основное отверстие для дополнения подачи из пускового отверстия.

Рис. 4.11. Сдвоенная топливная распылительная форсунка (основано на оригинальных чертежах фирмы Rolls-Royce)

4.21. СИСТЕМА ИСПАРИТЕЛЬНЫХ ТРУБОК

В испарительном методе, рис. 4.12, топливо из трубок подачи распыляется в испарительные трубки, находящиеся внутри жаровой трубы. Первичный воздух подается в жаровую трубу через отверстие в топливной трубке, а также через отверстия во входной секции жаровой трубы. Поток топлива разворачивается на 180 градусов, и, т.к. трубки подогреваются в процессе горения, топливо испаряется до попадания в жаровую трубу.

Рис. 4.11. Испарительный метод подачи топлива


ГЛАВА 5 – ТУРБИНА

Для хорошего смесеобразования одновременно необходимо правильно сочетать распыливание топлива и движение воздуха в камере сгорания. Это позволит улучшить распределение топлива в камере и осуществить процесс сгорания при наименьшем количестве воздуха.

Форма камеры сгорания должна:

  • соответствовать направлению и дальнобойности струи впрыскиваемого топлива;
  • обеспечивать организованное движение потока воздуха, интенсивное перемешивание топлива и воздуха, полное сгорание топлива в короткий период при наименьшем количестве воздуха;
  • плавное нарастание давления в цилиндре, умеренное максимальное давление при сгорании и минимальные тепловые потери;
  • создавать условия для облегченного запуска двигателя.

По конструкции дизельные двигатели разделяются на две основные категории: с неразделенными и разделенными камерами сгорания. Неразделенные камеры имеют только одно отделение, в котором происходит и смесеобразование, и сгорание топлива. Разделенные камеры разделены на две части: основную и дополнительную, соединены между собой горловиной. При этом топливо впрыскивается в дополнительную камеру.

По способу различают объемное, пленочное и комбинированное смесеобразование.

При объемном смесеобразовании топливо распыливается в объеме камеры сгорания и лишь небольшая часть его попадает в пристеночный слой. Объемное смесеобразование осуществляется в неразделенных камерах сгорания.

Пленочное смесеобразование применяется в ряде конструкций камер сгорания, когда почти все топливо направляется в пристеночную зону. В центральную часть камеры сгорания попадает приблизительно 5–10% впрыскиваемого форсункой топлива. Остальная часть топлива распределяется на стенках камеры сгорания в виде тонкой пленки (10–15 мкм). Первоначально воспламеняется часть топлива, попавшая в центральную часть камеры сгорания, где обычно отсутствует движение заряда и устанавливается наиболее высокая температура. В дальнейшем, по мере испарения и смешения с воздухом, горение распространяется на основную часть топлива, направленную в пристеночный слой. При пленочном смесеобразовании требуется менее тонкое распыливание топлива. Применяют форсунки с одним сопловым отверстием. Давление впрыска топлива не превышает 17–20 МПа. Пленочное смесеобразование по сравнению с объемным обеспечивает лучшие экономические показатели двигателя, упрощает конструкцию топливной аппаратуры. Основным недостатком являются низкие пусковые свойства двигателя при низких температурах в связи с малым количеством топлива, участвующего в первоначальном сгорании. Этот недостаток устраняют путем подогрева воздуха на впуске или за счет увеличения количества топлива, участвующего в образовании начального очага сгорания.


Комбинированное смесеобразование получается при меньших диаметрах камеры сгорания, когда часть топлива достигает ее стенки и концентрируется в пристеночном слое. Другая часть капель топлива располагается во внутреннем объеме заряда. На поверхности камеры оседает примерно 50% топлива. При впуске в камере не создается вращательного движения заряда. Заряд приводится в движение при вытеснении его из надпоршневого пространства в камеру сгорания, и создается вихрь. Скорость движения заряда достигает 40–45 м/с. Отличительной особенностью от пленочного смесеобразования является встречное движение струй топлива и заряда, вытесняемого из надпоршневого пространства, что способствует увеличению количества топлива, взвешенного в объеме камеры сгорания, и сближает процесс с объемным смесеобразованием. Форсунки применяют с распылителями, имеющими 3–5 сопловых отверстий.

Камеры сгорания с непосредственным впрыском. В дизельных двигателях с такими камерами топливо впрыскивается непосредственно в камеру сгорания форсункой с рабочим давлением 15–30 МПа, имеющей многодырчатые распылители (5–7 отверстий) с малым диаметром сопловых каналов (0.15–0.32 мм). Столь высокие давления впрыска применяются ввиду того, что в данном случае распыливание топлива и перемешивание его с воздухом достигается главным образом за счет кинетической энергии, сообщаемой топливу при впрыске. Для равномерного распределения топлива в камере форсунки таких двигателей часто выполняют с несколькими отверстиями.

На рис. 6.4 показаны камеры сгорания двигателей с непосредственным впрыском, обеспечивающие объемное смесеобразование.

Рис. 6.4. Неразделенные камеры сгорания для объемного смесеобразования:

а – полусферическая, б – тороидальная

У дизелей требования к форме камеры сгорания определяются процессом смесеобразования. Для создания рабочей смеси в них отводится очень малое время, так как почти сразу после начала впрыска топлива начинается сгорание, и остаток топлива подается уже в горящую среду. Каждая капля топлива должна войти в соприкосновение с воздухом как можно быстрее, чтобы выделение теплоты произошло в начале хода расширения.

Для удовлетворения этих требований необходимым является создание интенсивного направленного движения воздуха, но организовать этот процесс нужно так, чтобы с впрыскиваемым топливом смешалось необходимое для сгорания количество воздуха. Принципиально для этой цели существуют две возможности: направлять либо воздух к топливу, либо топливо к воздуху. У автомобильных дизелей используются оба способа.

В первом из них топливо впрыскивается непосредственно в цилиндр несколькими струями (факелами), которые обдуваются вращающимся потоком воздуха. Скорость потока должна обеспечивать прохождение воздухом пути от одной струи к другой за время сгорания .

Число струй, однако, ограничено, и поэтому необходимое количество топлива должно впрыскиваться с определенной скоростью, чтобы обеспечивалось, его хорошее распыливание. Если топливо хорошо распылено, то оно быстро прогревается после впрыска в горячий воздух, и время, проходящее до его воспламенения (так называемая задержка воспламенения), уменьшается. Малое время задержки воспламенения нужно для того, чтобы количество топлива, поданного в камеру сгорания за этот период, не было настолько большим, чтобы после воспламенения вызвать резкое нарастание давления и большую жесткость работы двигателя. Регулирование процесса, сгорания может быть обеспечено законом подачи топлива в уже воспламененную среду.

Если скорость, время и количество подаваемого топлива определены, то можно рассчитать диаметр силовых отверстий распылителя форсунки, задавшись их числом. Для устранения опасности закоксовывания и обеспечения технологичности изготовления распылителей форсунок минимальный диаметр отверстий ограничивается 0,25-0,3 мм. Поэтому их число в автомобильных дизелях не превышает 4-5. В соответствии с этим должна быть установлена интенсивность вращения воздуха. Вращательное движение воздуха в цилиндре можно создать с помощью впускного канала тангенциальной или винтовой формы. Так же, как и у бензиновых двигателей, дополнительную турбулизацию заряда в дизеле можно создать в конце хода сжатия вытеснением воздуха из пространства между днищем поршня и головкой цилиндра.

Образование смеси с помощью второго способа - подвода топлива к воздуху - затруднено, если нельзя использовать большое число форсунок. У дизелей с разделенными камерами сгорания (предкамерных и вихрекамерных) впрыск осуществляется так, что все топливо подается во вспомогательную камеру малого объема, содержащую лишь часть воздуха, поступившего в цилиндр. При воспламенении топлива в этой камере давление повышается и вытесняет еще не сгоревшее топливо в объем основной камеры сгорания над поршнем, где сгорание завершается.

Таким образом, по способу смесеобразования различают дизели с непосредственным впрыском топлива в цилиндр и дизели с разделенной камерой сгорания. При непосредственном впрыске камера сгорания образована в поршне, который имеет более высокую температуру, чем охлаждаемая головка цилиндра. Это уменьшает потери теплоты горячих газов в стенки камеры сгорания. Камера сгорания должна быть компактной с тем, чтобы потери теплоты при сжатии воздуха также не были большими и, следовательно, для достижения необходимой для воспламенения топлива температуры не требовалась слишком высокая степень сжатия. Величина степени сжатия дизеля сверху ограничена нагрузкой на кривошипный механизм и потерями на трение, а снизу - условиями обеспечения так называемого холодного пуска. При непосредственном впрыске степень сжатия ε лежит в пределах от 15 до 18. При холодном пуске дизели этого типа не требуют дополнительных мер для обеспечения воспламенения топлива.

У дизеля с разделенной камерой сгорания воздух во время такта сжатия поступает во вспомогательную камеру через соединительный канал с большой скоростью и при этом значительно охлаждается. Поэтому для обеспечения необходимой температуры к моменту воспламенения требуется более высокая степень сжатия - от 20 до 24, но, несмотря на это, при холодном пуске двигателя воздух во вспомогательной камере должен предварительно подогреваться с помощью специальной свечи накаливания, выключаемой после пуска двигателя.

Площадь поверхности основной и вспомогательной камер сгорания весьма велика, скорость движения воздуха около их стенок также достигает высоких значений. Это означает повышенную теплоотдачу в стенки, т. е. рост тепловых потерь. В связи с этим дизели с раздельной камерой сгорания имеют более высокие удельные расходы топлива, чем дизели с непосредственным впрыском.

Итак, дизели с непосредственным впрыском топлива более экономичны. Недостаток их состоит в значительном шуме при сгорании, однако у последних конструкций этот недостаток практически устранен. Главной причиной шума является высокая скорость нарастания давления в начальной фазе горения. Для устранения этого явления необходимо сократить период задержки воспламенения и управлять дальнейшим протеканием процесса сгорания посредством закона подачи топлива.

Хорошие результаты по снижению жесткости работы достигнуты в дизелях фирмы «МАН» с помощью сферической камеры сгорания, расположенной в поршне.

Форсунка в этих дизелях имеет только два отверстия, через одно из которых основная масса топлива впрыскивается на стенку камеры сгорания, а через другое - меньшая, запальная порция направляется в середину камеры, где воздух имеет наиболее высокую температуру. Воздуху в камере придано интенсивное вращение. Топливо, находящееся на стенке камеры, относительно холодное и поэтому воспламенения всей его массы сразу не происходит. Топливные пары поступают в поток воздуха со стенок камеры постепенно, смешиваются с ним, и образовавшаяся после этого топливовоздушная смесь воспламеняется. При этом обеспечивается мягкая и достаточно экономичная работа двигателя, в связи с чем возникло несколько близких по принципиальной схеме вариантов этого рабочего процесса.

В частности, в камере сгорания цилиндрической формы фирмы «Дойц» (ФРГ) одна струя впрыскивается параллельно оси камеры в пространство вблизи стенки. Полученные при этом способе результаты также можно оценить положительно. Следует отметить, что при таком смесеобразовании многое зависит от температуры стенок камеры сгорания.

При затягивании процесса сгорания теплота, выделяющаяся в течение хода расширения, используется не полностью (см. рис. 3 в статье «Влияние степени сжатия на индикаторный КПД двигателя »), из-за чего увеличивается удельный расход топлива, т. е. преимущества непосредственного впрыска топлива фактически теряются. В наиболее широко применяемых камерах сгорания тороидальной формы топливо впрыскивается по радиусу камеры на ее стенку несколькими симметричными струями, расположенными под большим углом к вертикальной оси. При сгорании вначале реагирует часть топлива, смешиваемая с воздухом прямо у стенки. Газы, образующиеся при горении, имеют высокую температуру и небольшую плотность. При сильном вращении заряда на стенки камеры за счет центробежной силы попадает холодный воздух из центральной части камеры, оттесняя к центру легкие продукты сгорания. Непосредственно вблизи стенок воздух смешивается с топливом. В лаборатории фирмы «Рикардо» (Англия) этот процесс был зарегистрирован на кинопленку.

В дизелях с разделенными камерами сгорания вспомогательную камеру довольно просто создавать и при небольших диаметрах цилиндра. Это весьма важно при конвертировании бензинового двигателя в дизель. Такая задача с успехом была решена под руководством П. Хофбауэра на двигателе автомобиля «Фольксваген Гольф» (рис. 1).

В алюминиевой головке цилиндра была образована небольшая вихревая камера сгорания с форсункой и свечой накаливания. Выемка в днище поршня и выходное отверстие канала, соединяющего вихревую камеру с цилиндром, выполнены обычным способом. Объем вихревой камеры составлял 48 % объема всей камеры сгорания. Рабочий объем двигателя был увеличен с 1100 см 3 до 1500 см 3 , степень сжатия ε = 23,5 . Мощность этого дизеля при 5000 мин -1 составила 37 кВт.

Удельный расход топлива при частоте вращения n = 2500 мин -1 дизельного и бензинового двигателей автомобиля «Фольксваген Гольф» показан на рис. 2.

При среднем эффективном давлении p e = 0,2 МПа удельный расход топлива у дизеля ниже на 25 %. С повышением нагрузки разница в топливной экономичности бензинового двигателя и дизеля уменьшается, а при работе в режиме полной нагрузки она равна нулю. Снижение удельного расхода топлива при частичной нагрузке является очень важным, так как для легковых автомобилей именно эти режимы являются наиболее типичными при движении в городских условиях.

Варианты конструкции дизеля «Фольксваген», отличающиеся размещением форсунки и свечи накаливания, показаны на рис. 1. Изменение местоположения свечи накаливания принесло уменьшение удельного расхода топлива и снижение дымности отработавших газов, что отражено на графиках, приведенных на рис. 3, а. Влияние нагрузки, т. е. среднего эффективного давления p e на те же показатели при работе двигателя в режиме постоянной частоты вращения, равной 3000 мин -1 , показано на рис. 3, б. Улучшение отчетливо видно на всех режимах работы двигателя. Вариант Б (см. рис. 1) отличается расположением свечи накаливания относительно направления вращения воздуха в вихревой камере. Эта конструкция, однако, достаточно сложна при ее реализации в производстве.

Энергетический кризис подтолкнул многих конструкторов автомобильных бензиновых двигателей к конвертированию их в дизельные с целью повышения индикаторного КПД . Конструктор и исследователь из ФРГ Л. Эльсбетт при конвертировании бензиновых двигателей достиг до 20 %. В его дизелях «ЭЛКО» используется непосредственный впрыск топлива односопловой форсункой в сферическую камеру сгорания, расположенную в днище поршня. Ось струи делит радиус камеры пополам в точке пересечения с ним. Организация рабочего процесса использует эффект перемещения горячих продуктов сгорания малой плотности в центр вращающегося в камере сгорания воздушного заряда. Вследствие этого происходит хорошее перемешивание горящей смеси с воздухом, и так как сгорание происходит в основном в центре камеры, то тепловые потери в ее стенки относительно невелики.

Поршень состоит из двух частей, причем верхняя с размещенной в ней камерой сгорания и поршневыми кольцами стальная. Сталь обладает большой термической прочностью и худшей, чем алюминий, теплопроводностью, и поэтому поверхность камеры сгорания имеет более высокую температуру, что, в свою очередь, уменьшает теплопередачу от горячих газов в стенки камеры.

Такое решение, кроме того, предотвращает повышенный износ поршневых канавок, характерный для алюминиевых поршней дизелей.

Юбка поршня, служащая направляющей, изготовлена из алюминиевого сплава и соединяется с верхней частью через поршневой палец. Такая конструкция поршня обладает свойствами крейцкопфа, т. е. уменьшает действующие на стенку цилиндра боковые силы, возникающие при движении шатуна, и создает предпосылки для исключения, являющегося одним из источников шума при работе двигателя опрокидывающего момента, который действует на верхнюю часть поршня.

Для снижения удельного давления на поршневой палец верхняя головка шатуна и бобышки днища поршня имеют клиновидную форму в сечении по оси пальца. Благодаря этому площадь верхней части бобышки днища поршня больше нижней его части. Аналогично нижняя часть втулки шатуна имеет также большую площадь, чем верхняя. Края поршневого пальца воспринимают лишь незначительные силы от юбки поршня.

Водяные каналы в головке цилиндра дизеля «ЭЛКО» исключены. Теплота отводится только от наиболее важных мест, таких как межклапанные перемычки и отверстия для форсунок при помощи масла, циркулирующего по специально высверленным каналам диаметром 6-8 мм. С целью уменьшения отвода теплоты цилиндры охлаждаются таким образом, чтобы температура их верхней зоны не превышала температуру, необходимую для обеспечения смазывания.

При таком уменьшении теплоотвода в систему охлаждения большее количество теплоты отводится, однако с отработавшими газами, что, естественно, приводит к применению турбины для использования этой теплоты. Удельные расходы топлива дизелей «ЭЛКО» изображены на рис. 4, где представлены многопараметровые характеристики пятицилиндрового дизеля с рабочим объемом 2300 см 3 мощностью 80 кВт (рис. 4, а) и шестицилиндрового с рабочим объемом 13300 см 3 (рис. 4, б) . Оба дизеля имеют газотурбинный наддув без промежуточного охлаждения наддувочного воздуха.

Уменьшение теплоотдачи в систему охлаждения позволяет использовать радиатор меньшего объема и соответственно вентилятор меньшей мощности. Если учесть необходимость отапливания автомобиля в холодный период, для чего вполне достаточно теплоты, отводимой от двигателя, то радиатор для охлаждения двигателя в этот период может вообще не потребоваться.

При сравнении удельных расходов топлива нужно учитывать влияние целого ряда факторов. Так, чем больше диаметр цилиндра, тем более выгодные условия имеются для достижения малого удельного расхода топлива. Важным является также отношение диаметра цилиндра к величине хода поршня. Л. Эльсбетт называет свой дизель «теплоизолированным», что является определенным шагом вперед в направлении создания адиабатного двигателя , о котором будет сказано в следующих главах книги. Некоторые особенности конструкции дизеля «ЭЛКО» показаны на рис. 5.

Дизели непосредственного впрыска по сравнению с дизелями с разделенными камерами сгорания имеют лучшие условия для уменьшения тепловых потерь в систему охлаждения. Выше уже говорилось о менее интенсивном охлаждении поверхности камеры сгорания и снижении скорости движения горячих газов около стенок. Однако и при непосредственном впрыске могут создаваться различные условия для отвода теплоты. В качестве примера на рис. 6 показан процесс совершенствования камеры сгорания дизеля «Татра 111А» (ЧССР).

В первом варианте этого дизеля воздушного охлаждения была использована камера сгорания полусферической формы. Таким путем при помощи больших клапанов стремились получить хорошее наполнение цилиндра и благодаря большому углу развала клапанов обеспечить возможности создания ребер охлаждения в зоне седла выпускного клапана. Для получения требуемой величины объема камеры сгорания днище поршня имело куполообразную форму, камера сгорания теряла компактность, и ее развитые поверхности охлаждения приводили к большим потерям теплоты и пониженным температурам в конце сжатия.

Уменьшив угол развала клапанов и применив почти параллельное их расположение, достигли почти плоского днища головки цилиндра и уменьшения поверхности охлаждения. Камера сгорания была размещена в днище поршня и стала более компактной. Температура стенок камеры сгорания в поршне выросла, и уменьшился отвод теплоты через них. Узкая горловина камеры сгорания обеспечила интенсивное завихривание воздуха при сжатии, что способствовало улучшению смесеобразования и регулирования процесса сгорания. Тем самым были снижены тепловые потери при сгорании, улучшены условия холодного пуска, уменьшен шум. Удельный расход топлива при этом снизился на 15 %. Сравнение начального и модернизированного вариантов камеры сгорания, показанных на рис. 6, является примером того, как с помощью конструкции камеры сгорания можно снизить расход топлива.

Камеры сгорания дизельных двигателей

Для хорошего смесеобразования одновременно крайне важно правильно сочетать распыливание топлива и движение воздуха в камере сгорания. Это позволит улучшить распределœение топлива в камере и осуществить процесс сгорания при наименьшем количестве воздуха.

Форма камеры сгорания должна:

  • соответствовать направлению и дальнобойности струи впрыскиваемого топлива;
  • обеспечивать организованное движение потока воздуха, интенсивное перемешивание топлива и воздуха, полное сгорание топлива в короткий период при наименьшем количестве воздуха;
  • плавное нарастание давления в цилиндре, умеренное максимальное давление при сгорании и минимальные тепловые потери;
  • создавать условия для облегченного запуска двигателя.

По конструкции дизельные двигатели разделяются на две основные категории: с неразделœенными и разделœенными камерами сгорания. Неразделœенные камеры имеют только одно отделœение, в котором происходит и смесеобразование, и сгорание топлива. Разделœенные камеры разделœены на две части: основную и дополнительную, соединœены между собой горловиной. При этом топливо впрыскивается в дополнительную камеру.

По способу различают объёмное, пленочное и комбинированное смесеобразование.

При объёмном смесеобразовании топливо распыливается в объёме камеры сгорания и лишь небольшая часть его попадает в пристеночный слой. Объемное смесеобразование осуществляется в неразделœенных камерах сгорания.

Пленочное смесеобразование применяется в ряде конструкций камер сгорания, когда почти всœе топливо направляется в пристеночную зону. В центральную часть камеры сгорания попадает приблизительно 5–10% впрыскиваемого форсункой топлива. Остальная часть топлива распределяется на стенках камеры сгорания в виде тонкой пленки (10–15 мкм). Первоначально воспламеняется часть топлива, попавшая в центральную часть камеры сгорания, где обычно отсутствует движение заряда и устанавливается наиболее высокая температура. В дальнейшем, по мере испарения и смешения с воздухом, горение распространяется на основную часть топлива, направленную в пристеночный слой. При пленочном смесеобразовании требуется менее тонкое распыливание топлива. Применяют форсунки с одним сопловым отверстием. Давление впрыска топлива не превышает 17–20 МПа. Пленочное смесеобразование по сравнению с объёмным обеспечивает лучшие экономические показатели двигателя, упрощает конструкцию топливной аппаратуры. Основным недостатком являются низкие пусковые свойства двигателя при низких температурах в связи с малым количеством топлива, участвующего в первоначальном сгорании. Этот недостаток устраняют путем подогрева воздуха на впуске или за счёт увеличения количества топлива, участвующего в образовании начального очага сгорания.

Комбинированное смесеобразование получается при меньших диаметрах камеры сгорания, когда часть топлива достигает ее стенки и концентрируется в пристеночном слое. Другая часть капель топлива располагается во внутреннем объёме заряда. На поверхности камеры осœедает примерно 50% топлива. При впуске в камере не создается вращательного движения заряда. Заряд приводится в движение при вытеснении его из надпоршневого пространства в камеру сгорания, и создается вихрь. Скорость движения заряда достигает 40–45 м/с. Отличительной особенностью от пленочного смесеобразования является встречное движение струй топлива и заряда, вытесняемого из надпоршневого пространства, что способствует увеличению количества топлива, взвешенного в объёме камеры сгорания, и сближает процесс с объёмным смесеобразованием. Форсунки применяют с распылителями, имеющими 3–5 сопловых отверстий.

Камеры сгорания с непосредственным впрыском. В дизельных двигателях с такими камерами топливо впрыскивается непосредственно в камеру сгорания форсункой с рабочим давлением 15–30 МПа, имеющей многодырчатые распылители (5–7 отверстий) с малым диаметром сопловых каналов (0.15–0.32 мм). Столь высокие давления впрыска применяются ввиду того, что в данном случае распыливание топлива и перемешивание его с воздухом достигается главным образом за счёт кинœетической энергии, сообщаемой топливу при впрыске. Для равномерного распределœения топлива в камере форсунки таких двигателœей часто выполняют с несколькими отверстиями.

На рис. 6.4 показаны камеры сгорания двигателœей с непосредственным впрыском, обеспечивающие объёмное смесеобразование.

Рис. 6.4. Неразделœенные камеры сгорания для объёмного смесеобразования:

а – полусферическая, б – тороидальная

Рис. 6.6. Неразделœенные камеры сгорания для пленочного смесеобразования:

а – типа дизелœей МАН, б – типа “Гессельман”

Кроме указанной выше, при пленочном смесеобразовании камеру сгорания выполняют тарелкообразной (рис. 6.6б). Струя топлива из форсунки, ввиду малого расстояния, достигает дна камеры и осœедает в виде пленки.

Струи топлива попадают на стенку под острым углом и совершают сравнительно малый путь. На конической поверхности камеры осœедает примерно 50% топлива.

Основное достоинство камер сгорания с непосредственным впрыском по сравнению с камерами других разновидностей состоит в следующем.

1. Простая и компактная форма камеры сгорания обеспечивает меньшие тепловые потери в процессе сгорания и более высокий эффективный КПД.

2. Менее интенсивное охлаждение воздуха в период сжатия (компактность камеры и сравнительно небольшое вихревое движение воздуха) создает условия для облегчения пуска. Время для пуска двигателя с непосредственным впрыском в 1.8–3.6 раза меньше, чем для пуска двигателœей с другими камерами сгорания.

3. Конструкция головки цилиндра упрощается.

Недостатки камер сгорания с непосредственным впрыском состоят в следующем.

1. Смесеобразование происходит при больших давлениях впрыска (до 30 МПа). Это повышает требования к топливоподающей аппаратуре.

2. Процесс сгорания характеризуется значительными давлениями. Скорость нарастания давления при этом высокая. В связи с увеличением нагрузки на кривошипно-шатунный механизм приходится увеличивать запас прочности узлов двигателя.

3. Малые сопловые отверстия распылителя форсунки (0.1–0.25 мм) требуют точного исполнения и при недостаточно очищенном топливе могут засоряться. По этой причине топливо должно очищаться с большой тщательностью. Незначительные отклонения в качестве топлива от нормы ухудшают работу двигателя.

Предкамеры. Предкамерные дизельные двигатели имеют камеру сгорания, разделœенную на две части (рис. 6.8). Основная камера размещается непосредственно над поршнем. Ее объём составляет 0.75–0.60отвсœего объёма камеры сгорания. Предкамера выполняется в головке цилиндра. Она занимает по объёму 0.25–0.40 всœего объёма камеры. Предкамера соединяется с основной камерой одним или несколькими каналами.

При этом сгорает от 20 до 30% впрыскиваемого топлива, что соответствует количеству кислорода воздуха, содержащегося в предкамере.

При сгорании части топлива температура и давление в предкамере повышаются. Горящие газы и несгоревшее топливо устремляются из предкамеры в основную камеру. Здесь сгорание топлива продолжается и заканчивается в процессе расширения.

В предкамерных двигателях интенсивное смесеобразование достигается главным образом за счёт энергии топлива, частично сгоревшего в предкамере. Эта энергия вызывает перепад давления между предкамерой и основной камерой (обычно 1.5 МПа), что создает условия для интенсивного смесеобразования и более тонкого распыления топлива, предварительно распыленного в предкамере.

Смесеобразованию способствует образование вихревых движений воздуха при перемещении его в процессе сжатия из основной камеры в предкамеру. Форсунка таких двигателœей обычно выполняется с одним отверстием.

Вихревые камеры. Двигатели с вихревыми камерами, как и предкамерные двигатели, имеют камеру, разделœенную на две части (рис. 6.9). Основная камера расположена непосредственно над поршнем и имеет сравнительно небольшой объём. Вихревая камера выполнена в головке цилиндра, имеет обтекаемую форму (шара или сплющенного шара) и охлаждается водой. Ее объём составляет от 50 до 75% всœего объёма камеры сгорания. Такой объём позволяет вовлечь в вихревое движение большое количество воздуха. Вихревая камера сообщается с основной посредством горловины.

В период сгорания в вихревой камере резко повышается давление. При этом продукты сгорания и несгоревшая часть топлива устремляются в основную камеру. Здесь процесс сгорания продолжается, заканчиваясь при расширении.

В двигателях с вихревыми камерами для смесеобразования используются главным образом вихревые потоки воздуха, создаваемые в процессе сжатия в вихревой камере. Перепад давлений между камерами сравнительно небольшой (обычно 0.6 МПа). Форсунки у таких двигателœей применяются обычно с одним отверстием. Давление начала подачи составляет 8–10 МПа.

В дизельных двигателях с разделœенными камерами сгорания достигается бездымная работа при малых значениях коэффициента избытка воздуха. Значительно снижаются требования к качеству распыливания топлива, и применяются форсунки закрытого типа с одним сопловым отверстием большого диаметра (1–2 мм). Давление впрыска топлива составляет 12–15 МПа, и обеспечивается мягкая работа двигателя. Эти дизельные двигатели являются наиболее быстроходными из всœех дизелœей.

Основные недостатки раздельных камер сгорания:

Камеры сгорания дизельных двигателей - понятие и виды. Классификация и особенности категории "Камеры сгорания дизельных двигателей" 2017, 2018.