Где в самолете находятся топливные баки схема. Размещение топлива на самолете. Испытание топливной системы самолета на герметичность

Топливная система служит для размещения необходимого запаса топлива на самолете и питания двигателя топливом на всех режимах его работы? при всех допустимых эволюциях самолета.

В качестве топлива для питания двигателя М-14П применяется бензин Б-91/115 ГОСТ 1012-72

Топливо на самолете размещено в двух баках емкостью по 61+ 1 л Бензобаки расположены в правой и левой консолях крыла. В фюзеляже установлен расходный бачок емкостью 5,5+ 1 л, служащий для обеспечения перевернутого полета и полета с отрицательными перегрузками.

Из баков топливо самотеком через блок обратных клапанов поступает в расходный бачок. Два обратных клапана предотвращают перетекание топлива из одного бензобака в другой, третий - вытекание топлива из расходного бачка в бензобаки при пикировании самолета.

Топливо из расходного бачка через обратный клапан, обеспечивающий работу заливного шприца 740400, пожарный кран, бензиновый фильтр поступает к бензиновому насосу 702МЛ.

После насоса топливо под давлением поступает в компенсационный бачок, затем через фильтр тонкой очистки 8Д2966064 в карбюратор двигателя и к двум датчикам давления топлива П-1Б.

Каждый датчик выдает сигналы на свой указатель УКЗ-1 Указатели и датчики входят в комплект трехстрелочного электрического моторного индикатора ЭМИ-ЗК. Указатели УКЗ-1 расположены на приборных досках в обеих кабинах, датчики П-1Б - на стенке шпангоута 0.

Для подачи топлива в цилиндры двигателя и заполнения основной топливной магистрали перед запуском двигателя используется заливной шприц 740400, рукоятка которого расположена на приборной доске первой кабины.

При взятии рукоятки на себя полость шприца заполняется топливом, поступающим от основной топливной магистрали. Заливной шприц 740400 также служит для аварийной подачи топлива при отказе насоса 702 МЛ.

Подача топлива для разжижения масла производится через электромагнитный клапан 772, установленный на шпангоуте 0. Подвод топлива к клапану осуществляется при помощи гибкого трубопровода, соединенного с выходным штуцером бензонасоса 702 МЛ. Выключатель клапана разжижения масла расположен на приборной доске первой кабины

Для перепуска избыточного количества топлива и поддержания заданного давления перед карбюратором компенсационный бачок соединен трубопроводом с расходным бачком. В трубопроводе стоят два дросселя. В нижней точке топливной магистрали между шпангоутами 5 и 6 расположен сливной кран 636700А, служащий для слива отстоя топлива.

Количество топлива в баках контролируется дискретным сигнализатором уровня топлива СУТ4-2, который выдает информацию о запасе топлива в двух баках по 9-ти уровням на световое табло индикатора. В комплект СУТ4-2 входят: два индикативных датчика ДСУ 1-2 и один индикатор ИУТЗ-1.

Датчики сигнализатора установлены в бензобаках, индикатор - на приборной доске первой кабины.

На приборной доске второй кабины установлены две сигнальные лампы, загорающиеся при остатке 12 литров топлива в соответствующем баке по сигналам сигнализатора.

Аварийный остаток топлива равен 24 литрам.

Рис. 1 Принципиальная схема топливной системы.

1-мановакуумметр МВ16К; 2-кран разжижения масла; 3 - заливной шприц, 4 - правый топливный бак; 5 - заправочная горловина, 6 - компенсационный бачок; 7 - дроссели; 8 - обратный клапан; 9 - блок обратных клапанов, 10 - сливной кран, 11 - расходный бачок; 12 - левый топливный бак, 13 - датчик топливомера ДСУ-1-2; 14 - указатель сигнализатора уровня топлива ИУТ-3-1; 15 - пожарный кран, 16-бензофильтр, 17 - приемники давления топлива П-1Б; 18 - электрические моторные индикаторы ЭМИ-ЗК; 19 - фильтр тонкой очистки; 20 - указатель температуры смеси ТУЭ-48К

Краткие сведения об агрегатах

Основные бензиновые баки

Бензиновые баки ёмкостью по 61 ±1 л. служат для размещения запаса топлива, установлены в консолях крыла и крепятся на ложементах с помощью стяжных лент.

К бакам приклеены прокладки из войлока под ложементы и стяжные ленты.

Бак клёпано-сварной конструкции с обварными заклёпками. Состоит из двух обечаек, двух днищ, трёх.перегородок. Внутри бака проложена дренажная трубка до верхней точки бака. К баку приварены фланцы под штуцера основной топливной магистрали, дренажной магистрали, датчик топливомера, заливную горловину, дренаж заливной горловины.

Для слива топлива из заливной горловины после заправки через бак проложена дренажная труба, выходящая через отверстие в люке крыла в атмосферу.

Заливная горловина имеет резиновое кольцо, плотно прилегающее к верхней обшивке крыла. Во время заправки исключается попадание топлива во внутренние отсеки крыла. В заливную горловину вставлена защитная сетка.

Расходный бачок

Бачок - сварной конструкции, состоит из обечайки и двух днищ. Емкость бачка 5,5+1 л.

К бачку приварены штуцера для подсоединения трубопроводов подвода топлива, отвода топлива, дренажа и сброса топлива из компенсационного бачка.

Топливо из бачка забирается гибким заборником.

Бачок установлен в нижней части фюзеляжа между шпангоутами 6 и 7 на левом борту. Он притянут к ложементам фюзеляжа, оклеенным войлоком, двумя металлическими стяжными лентами.

Компенсационный бачок

Компенсационный бачок выполнен в виде шара. Его корпус сварен из двух полусфер, в которые вварены штуцера для подсоединения трубопроводов системы.

Бачок установлен в чашке, к которой крепится стяжной лентой. чашка прикреплена к передней стенке шпангоута 0.

Бензиновый фильтр

Бензиновый фильтр состоит из корпуса, крышки и траверсы. Внутри фильтра размещен фильтропакет. На корпусе имеются два штуцера 1 для подсоединения трубопроводов системы.

Фильтропакет состоит из двух металлических сеток: наружной, свернутой в виде цилиндра, припаянной к кольцу и подкрепленной тремя вертикальными стойками, и внутренней, свернутой в виде конуса.

Обе сетки внизу припаяны к чашке. С наружной стороны к крышке припаяна винтовая пружина.

Фильтропакет фиксируется на крышке фильтра при помощи винта, ввернутого в крышку. При установке крышки фильтра на корпус пружина плотно прижимает фильтропакет к верхнему донышку корпуса. Крышка в закрытом положении прижимается к корпусу траверсой с помощью двух болтов, имеющих осевое крепление к корпусу, и двух гаек. Одна гайка барашковая, позволяет легко и быстро открывать крышку фильтра. В донышке крышки ввернута сливная пробка для слива бензина.

Бензиновый фильтр установлен на стенке шпангоута 0 и крепится к ней болтами с втулками за ушки корпуса.

Сливной кран 636700

Сливной кран предназначен для слива отстоя бензина из системы и установлен на тройнике между крыльевыми баками и расходным бачком.

Сливной кран вентильного типа открывается при вращении штока. Фиксация от самоотворачивания производится с помощью шлицевого зацепления и пружины, установленной в корпусе крана.

Открывается кран вращением ручки против часовой стрелки, закрывается вращением ручки по часовой стрелке.

Сливной кран имеет стандартный наконечник для подсоединения гибкого шланга или резиновой трубки.

Заливной шприц 740400

Шприц предназначен для подачи топлива в двигатель при запуске.

Создаваемый вакуум за один ход поршня 80 мм рт. ст., рабочая ёмкость 8 см 3 .

Бензин из системы подводится по трубопроводу к среднему штуцеру, отмеченному стрелкой, направленной внутрь головки корпуса 3.

К двум другим штуцерам присоединяются трубопроводы к цилиндрам и к магистрали карбюратора. В зависимости от положения золотника 18, устанавливаемого ручкой 10, открываются или закрываются каналы головки корпуса 3. При нейтральном положении ручки 10 все каналы закрыты.

Рис. 2 Бачок расходный

1 - шланг, 2 - штуцер, 3 - угольник, 4 - штуцер, 5 - штуцер, 6 - днище; 7 - днище, 8 - обечайка; 9 - ушко; 10 - контргайка, 11 - кольцо; 12 - пломба

Для заливки бензина необходимо предварительно повернуть, ручку 10 в определённое положение и быстро выдвинуть и задвинуть её, приведя в движение поршень 17.

При движении поршня 17 вверх в полости корпуса 16 создаётся разряжение, открывающее входной клапан (шарик) 1 и прижимающее выходной клапан (шарик) 20 к седлу.

Рабочая жидкость из системы засасывается в полость корпуса 16. При движении поршня 17 вниз в полости корпуса создаётся повышенное давление, открывающее выходной клапан и прижимающее входной клапан к седлу.

Бензин из полости корпуса выталкивается в щтуцер выходного клапана в соответствии с положением ручки 10 и далее в присоединенный к нему трубопровод.

Клапан электромагнитный 772

Клапан электромагнитный 772 предназначен для дистанционного управления подачей бензина с целью разжижения масла. Рабочее давление на входе в клапан - 2 кг/см 2 . Напряжение постоянного тока 27В.

Под действием силы магнитного потока якорь 4, преодолевая усилие пружины 5 и избыточное давление топлива, притягивается к сердечнику 9, открывая проходное сечение клапана.

При выключении питания якорь 4 под действием пружины 5 возвращается в первоначальное положение.

Пожарный кран 630600

Кран предназначен для перекрытия трубопровода системы питания топливом.

Давление рабочей жидкости не более 2 кг/см 2 , момент поворота поводка не более 28 кг.см.

Кран может находиться в двух чётко фиксируемых положениях:

закрытом и открытом. Управление краном ручное, посредством тяг. В закрытом положении клапан 6 прижимается к седлу штуцера 1 пружиной 5 и давлением топлива.

Для открытия крана поводок 13 поворачивается на определенный угол (71°) против направления часовой стрелки и прижимает клапан 6 к стенке корпуса 3, открывая проход топливу.

Изобретение относится к авиации. Топливная система самолета содержит топливные баки, предрасходный и расходный отсеки, насос подкачки, струйные насосы перекачки топлива из топливных баков в предрасходный отсек, струйный насос перекачки топлива из предрасходного в расходный отсек, трубопровод подачи активного топлива, снабженный клапанами. Система подключена к установленному на самолете датчику перегрузок, содержит бачок-аккумулятор, датчики уровня топлива и датчики опорожнения бака. Каждый струйный насос перекачки топлива в предрасходный отсек снабжен гидравлическим клапаном, управляемым от датчика уровня топлива, к каждому участку трубопровода между гидравлическим клапаном и датчиком уровня топлива подключен электрически управляемый клапан, стравливающий давление по сигналу от датчика опорожнения бака или сигналу об уменьшении показателя перегрузки от датчика перегрузок и восстанавливающий давление по сигналу о повышении показателя перегрузки. Изобретение уменьшает расход активного топлива отключением струйных насосов перекачки при опорожнении баков и на время действия отрицательных перегрузок, что увеличивает длительность полета при отрицательных перегрузках. 1 з.п. ф-лы, 1 ил.

Изобретение относится к авиации, точнее к топливным системам силовых установок самолетов.

В топливных системах самолетов широкое распространение получили струйные (эжекторные) насосы для перекачки топлива, в которых топливо увлекается струей того же топлива (так называемого активного или приводного топлива), подаваемой под давлением от другого насоса. Активное топливо отбирается, как правило, из расходного бака теми же подкачивающими насосами, которые снабжают двигатели. В отдельных случаях расход активного топлива становится сопоставимым с расходом его двигателями. При режимах полета с нулевыми и отрицательными перегрузками в некоторых ситуациях может возникнуть потребность повышенного расхода топлива двигателями, например на форсаже. Для обеспечения предельных расходов, а также необходимого времени работы двигателей в условиях отлива топлива от основного подкачивающего насоса, ставят второй подкачивающий насос, причем размещают его выше основного, чтобы он был залит топливом при этом режиме, а уменьшение топливоподачи из-за отлива топлива от основного насоса компенсируется бачком-аккумулятором. Для обеспечения необходимого времени полета при отрицательной перегрузке иногда увеличивают объем бачка-аккумулятора, что повышает вес и ухудшает летные характеристики самолета. Поэтому для уменьшения расхода топлива целесообразно иметь возможность отключения подачи активного топлива в струйные насосы перекачки, и когда в этом нет необходимости, и на время действия нулевой или отрицательной перегрузки.

Известна система подкачки топлива на самолете (а.с. СССР №335 908, кл. B64D 37/14), содержащая внутрибаковый эжекторный насос и линию подачи в указанный насос активного топлива, в которой в этой линии перед соплом эжекторного насоса смонтирован переключатель, исполнительный орган которого соединен с установленным в баке инерционным механизмом, имеющим груз с отрицательной плавучестью, обеспечивающий предотвращение подачи в насос активного топлива при нулевых и отрицательных перегрузках.

Известна система подкачки топлива летательного аппарата (а.с. СССР №378077, кл. B64D 37/20), содержащая установленные в расходном баке основной (струйный) и вспомогательный подкачивающие насосы, в которой напорный трубопровод (подающий активное топливо) основного насоса соединен с магистралью питания и каналом, сообщающим магистраль питания с камерой, соединенной с клапаном, открывающимся при нулевой и отрицательной перегрузках. В этих ситуациях клапан открывается и стравливает давление из напорного трубопровода, отключая подачу активного топлива в основной насос.

Известна топливная система самолета (а.с. СССР №526126, кл. B64D 37/20), которая содержит топливный бак с расходным отсеком, насосы подкачки, установленные в расходном отсеке, струйные насосы перекачки топлива из бака, подсоединенные к насосам подкачки, и трубопроводы. С целью повышения надежности работы, в том числе при обесточенной системе и отрицательных перегрузках, в топливном баке перед расходным отсеком вмонтирован предрасходный отсек с заправочным устройством, в нижней части отсека размещен струйный насос, перекачивающий топливо в расходный отсек, в стенках предрасходного отсека, примыкающего к топливному баку, выполнены отверстия, обеспечивающие заданный уровень топлива в нем, а выходы струйных насосов перекачки топлива из бака в предрасходный отсек и участки трубопроводов, соединяющих эти струйные насосы с насосами подкачки, расположены выше заданного уровня топлива в предрасходном отсеке и в верхних точках этих трубопроводов выполнены отверстия, перед которыми установлены обратные клапаны, а выход из струйного насоса перекачки топлива в расходный отсек расположен в верхней его части и на нем установлен инерционный клапан, перекрывающий этот выход при отрицательных перегрузках.

Во всех указанных системах при нулевых и отрицательных перегрузках подача активного топлива перекрывается с помощью инерционного клапана. Он действует как запорное устройство только при отрицательных перегрузках. Перекрытие подачи активного топлива инерционным клапаном приемлемо для непосредственно снабжающих двигатели насосов подкачки, но ситуации, когда возможно отключать струйные насосы перекачки, этим не ограничиваются. В ситуациях нормальной перегрузки он не перекрывает активное топливо тогда, когда, например, в работе струйных насосов нет необходимости, т.к. закончилось топливо в баке, где установлен насос.

Наиболее близкой к изобретению является топливная система самолета (а.с. СССР №942366, кл. B64D 37/00). Она содержит топливные баки, предрасходный отсек с обратными клапанами и отверстиями, обеспечивающими заданный уровень топлива, расходный отсек, в котором размещен насос подкачки, и отсек отрицательных перегрузок, а также подключенные к насосам подкачки струйные насосы перекачки топлива: два для перекачки из топливных баков в предрасходный отсек и один для перекачки из предрасходного в расходный отсек. Струйные насосы снабжены трубопроводами подачи активного топлива, а с целью повышения надежности питания двигателя в трубопроводе подачи активного топлива установлен клапан и имеются специальные изгибы, а в месте подключения этого трубопровода к насосам подкачки размещен общий для всех струйных насосов обратный клапан. На входных патрубках струйных насосов установлены обратные клапаны.

Недостатком этой системы является то, что в ней не предусмотрены средства для уменьшения расхода активного топлива тогда, когда это необходимо.

Задачей изобретения является уменьшение расхода активного топлива или его прекращение в возможных ситуациях, т.е. при опорожнении части баков и, в особенности, при нулевых и отрицательных перегрузках.

Задача решается с помощью топливной системы самолета, содержащей топливные баки, предрасходный и расходный отсеки, как минимум один размещенный в расходном отсеке насос подкачки, а также струйные насосы перекачки топлива из топливных баков в предрасходный отсек и как минимум один струйный насос перекачки топлива из предрасходного в расходный отсек, трубопровод подачи активного топлива к упомянутым струйным насосам, снабженный клапанами, отличающейся тем, что она подключена к установленному на самолете датчику перегрузок, содержит бачок-аккумулятор, датчики уровня топлива и датчики опорожнения бака, а упомянутые клапаны установлены так, что каждый струйный насос перекачки топлива из топливных баков в предрасходный отсек снабжен гидравлическим клапаном, управляемым от одного из датчиков уровня топлива, к каждому участку трубопровода между упомянутым гидравлическим клапаном и датчиком уровня топлива подключен электрически управляемый клапан, выполненный с возможностью стравливания давления на этом участке при поступлении от соответствующего датчика опорожнения бака сигнала об опорожнении бака или от упомянутого датчика перегрузок сигнала об уменьшении показателя перегрузки ниже заранее определенного значения и с возможностью обеспечения восстановления давления на этом участке при поступлении от упомянутого датчика перегрузок сигнала о повышении показателя перегрузки выше упомянутого значения.

Система содержит два насоса подкачки, причем они установлены на разной высоте.

Предлагаемая топливная система позволяет уменьшить расход активного топлива за счет отключения струйных насосов перекачки по мере опорожнения соответствующих им баков, а также на время действия нулевых и отрицательных перегрузок, что исключает необходимость увеличения объема бачка-аккумулятора или применения насоса подкачки повышенной производительности, а также позволяет увеличить длительность полета при отрицательных и нулевых перегрузках.

Изобретение поясняется чертежом, на которой изображена схема предлагаемой топливной системы.

Топливная система содержит топливные баки 1, расходный отсек 2, предрасходный отсек 3, как минимум один размещенный в расходном отсеке 2 насос подкачки 4, струйные насосы 5 перекачки топлива из топливных баков 1 в предрасходный отсек 3, как минимум один струйный насос 16 перекачки топлива из предрасходного отсека 3 в расходный отсек 2.

Для повышения надежности снабжения двигателей топливом при отрицательных перегрузках лучше, если система содержит два установленных на разной высоте насоса подкачки 4. Насосы подкачки 4 трубопроводом 6 соединены с двигателями 7.

Насосы 5 установлены в каждом баке 1. Имеется трубопровод 9 подачи активного топлива к струйным насосам 5 и 16.

Для повышения производительности струйных насосов 5 и 16 система содержит дополнительные насосы 8, соединенные входами с трубопроводом 6, а выходами - с трубопроводом 9 и повышающие давление топлива в трубопроводе 9. Трубопровод 9 подключен также к гидроприводным насосам подкачки 4.

Трубопровод 9 снабжен клапанами 10, которые выполнены гидравлическими и установлены так, что гидравлическим клапаном 10, управляемым от одного из датчиков уровня топлива 11, снабжен каждый струйный насос 5 перекачки топлива из топливных баков 1 в предрасходный отсек 3.

Датчики уровня топлива 11 представляют собой струйные сигнализаторы уровня, снабжаемые активным топливом также от насосов 8 по тем же трубопроводам 9. Датчики 11 выполнены так, что они выдают сигналы о понижении уровня топлива до значения, при котором следует начать перекачку топлива из очередного бака 1 в предрасходный отсек 3 или из предрасходного отсека 3 в расходный отсек 2. Клапан 10 открывается при поступлении сигнала от датчика 11.

К каждому участку трубопровода 9 между гидравлическим клапаном 10 и датчиком 11 подключен электрически управляемый клапан 12. Через клапаны 12 топливная система подключена к установленному на самолете датчику перегрузок 13 (на чертеже подключение показано точечными линиями 21).

В каждом из баков 1 имеются датчики 14 опорожнения баков. Каждый из датчиков 14 электрически соединен с соответствующим клапаном 12 (на чертеже точечными линиями 22 показаны некоторые соединения) и управляет клапаном 12.

Каждый электрически управляемый клапан 12, выполненный с возможностью стравливания давления на том участке, где он установлен, при поступлении от соответствующего датчика 14 опорожнения бака сигнала об опорожнении бака или от датчика перегрузок 13 сигнала об уменьшении показателя перегрузки ниже заранее определенного значения и с возможностью обеспечения восстановления давления на этом участке при поступлении от датчика перегрузок 13 сигнала о повышении показателя перегрузки выше упомянутого значения.

Топливная система содержит также бачок-аккумулятор 15, подключенный к трубопроводу 6 подкачки топлива к двигателям 7.

Насос 16 перекачки топлива из предрасходного 3 в расходный отсек 2 снабжен гидравлическим клапаном 17, управляемым от датчика уровня топлива 18, соединенного с трубопроводом 9 (клапан 17 выполнен с возможностью открытия при поступлении сигнала от датчика 18).

Топливная система работает следующим образом.

Во время обычного полета насосы 4 по трубопроводу 6 подают топливо под давлением в двигатели 7. Бачок-аккумулятор 15 под давлением в трубопроводе 6 заполнен топливом, но оно не расходуется. Дополнительные насосы 8 обеспечивают подачу под повышенным давлением активного топлива по трубопроводу 9 к насосам 4, датчикам уровня топлива 11, 18 (струйным индикаторам уровня), насосу 16 и, если клапаны 10 открыты, к струйным насосам 5.

Пока уровень топлива находится выше датчиков 11 уровня топлива, клапаны 10 закрыты, поэтому активное топливо к насосам перекачки 5 не подается.

По мере выработки топлива его уровень опускается до одного из датчиков 11, который открывает проход топлива в соответствующий соединенный с ним гидравлический клапан 10, клапан 10 открывает поступление активного топлива в соответствующий насос 5, который начинает перекачивать топливо. Когда уровень топлива в перекачиваемом баке 1 опускается до датчика 14 опорожнения бака, последний подает сигнал об этом на соответствующий электрически управляемый клапан 12, который по получении этого сигнала стравливает давление на участке трубопровода 9, где он установлен, в результате чего подача активного топлива через клапан 10 в соответствующий насос 5 прекращается, и насос 5 отключается. Таким образом, подача активного топлива к насосам 5 осуществляется только в период перекачки топлива этим насосом: с того момента, когда должна начаться перекачка и только до тех пор, пока бак 1, где установлен насос 5, не пуст.

Во время действия отрицательных перегрузок возникает необходимость кратковременного (на время действия перегрузки) отключения подачи активного топлива к насосам 5. В это время топливо отливает от заборника нижнего насоса 4 в расходном отсеке 2, давление в трубопроводе 6 уменьшается, топливо из бачка-аккумулятора 15 выдавливается в трубопровод 6.

Когда показания датчика перегрузок 13 уменьшаются и становятся ниже заранее определенного значения (близкого к нулю), сигнал об этом поступает на все клапаны 12, они стравливают давление из трубопровода 9, при этом закрываются клапаны 10 и подача активного топлива к насосам 5 прекращается. Общий расход топлива уменьшается за счет прекращения подачи активного топлива к насосам 5. Это позволяет увеличить время полета при отрицательной перегрузке, что особенно важно и регламентируется на режиме форсажа и максимальных оборотов двигателя.

Когда действие отрицательной перегрузки прекращается, сигнал о повышении показателя перегрузки выше заранее определенного значения от датчика перегрузок 13 поступает на все клапаны 12, они срабатывают и восстанавливают давление на своих участках трубопровода 9, восстанавливается подача активного топлива к насосам 5 и продолжается прерванная на время действия отрицательной перегрузки перекачка топлива ими в предрасходный отсек 3.

Таким образом, предлагаемая топливная система позволяет не только управлять подачей активного топлива в зависимости от складывающейся ситуации, но и обеспечивает увеличение времени полета при отрицательных и нулевых перегрузках.

1. Топливная система самолета, содержащая топливные баки, предрасходный и расходный отсеки, как минимум один размещенный в расходном отсеке насос подкачки, а также струйные насосы перекачки топлива из топливных баков в предрасходный отсек и как минимум один струйный насос перекачки топлива из предрасходного в расходный отсек, трубопровод подачи активного топлива к упомянутым струйным насосам, снабженный клапанами, отличающаяся тем, что она подключена к установленному на самолете датчику перегрузок, содержит бачок-аккумулятор, датчики уровня топлива и датчики опорожнения бака, а упомянутые клапаны выполнены гидравлическими и установлены так, что каждый струйный насос перекачки топлива из топливных баков в предрасходный отсек снабжен гидравлическим клапаном, управляемым от одного из датчиков уровня топлива, к каждому участку трубопровода между упомянутым гидравлическим клапаном и датчиком уровня топлива подключен электрически управляемый клапан, выполненный с возможностью стравливания давления на этом участке при поступлении от соответствующего датчика опорожнения бака сигнала об опорожнении бака или от упомянутого датчика перегрузок сигнала об уменьшении показателя перегрузки ниже заранее определенного значения и с возможностью обеспечения восстановления давления на этом участке при поступлении от упомянутого датчика перегрузок сигнала о повышении показателя перегрузки выше упомянутого значения.

2. Топливная система по п.1, отличающаяся тем, что она содержит два насоса подкачки, причем они установлены на разной высоте.

Похожие патенты:

Изобретение относится к авиаприборостроению и может быть использовано для измерения запаса и расхода топлива на борту самолета. .

Размещение на самолете отсеков для топливных баков производится при компоновке самолета, при этом масса топлива в отсеке определяется как

M т =ρ(W 0 -W св -W a -W ст -W м.б.),= ρ W т

W 0 - объем отсека в конструкции самолета для бака;

ρ - плотность топлива при данной температуре;

W св - свободный объем надтопливного пространства, необходимый для расширения топлива при изменении его температуры;

W a - объем внутрибаковой арматуры, насосов, топливомеров и др.;

W ст - объем стенок баков;

W м.б - объем пространства между внешней поверхностью бака и элементами конструкции самолета;

W т – объем залитого топлива.

Условно приняв плотность топлива при температуре 20 °С за исходную и введя понятие коэффициента заполнения отсека к з.о. , можно оценивать и сопоставлять использование объемов отсеков самолета для размещения топлива. Этот коэффициент представляет собой отношение объема, заполняемого топливом, к объему пространства внутри конструкции самолета, отведенного для него: к з.о. = W т / W 0 .

В зависимости от типа самолета, места расположения, назначения и конструктивной схемы бака этот коэффициент может меняться в довольно широких пределах. Наибольшее значение, близкое к единице, он имеет для баков, выполненных в виде герметизированных отсеков самолета, из которых топливо вытесняется сжатым газом. Наименьшее значение коэффициента заполнения отсека (к з.о. = 0,8-0,9) бывает у расходных протектированных баков с большим количеством устройств автоматического управления порядком выработки топлива, насосами и другим оборудованием.

Увеличение потребных запасов топлива вызывает определенные трудности в его размещении на самолетах. На транспортных самолетах в фюзеляже размещаются пассажиры и груз, а топливо, в основном, может быть размещено только в консолях крыла. В связи с этим выбор высоты его профилей производится не только из аэродинамических требований, но и из условия размещения в них необходимых запасов топлива. Для наиболее рационального использования внутренних объемов крыльев и увеличения емкости топливной системы на современных самолетах под топливные баки используются образованные конструкцией крыла отсеки. Они покрываются изнутри герметиком и называются баками-кессонами.

Обычно под топливо отводится только часть объема крыла, а в остальном объеме размещаются насосы, механизация крыла, шасси и элементы системы управления самолетом. При верхнем расположении крыла его центроплан может использоваться для размещения топлива, что не допустимо для низкоплана (возможно возгорание топлива при аварийной посадке на “живот”).

Необходимо отметить, что масса топлива в полете разгружает крыло, благодаря чему получается определенный выигрыш в массе его конструкции. При посадке масса топлива увеличивает нагрузку, действующую на крепление крыла, но обычно посадка совершается с небольшим количеством топлива в крыльевых баках. В аварийных случаях посадки через небольшой промежуток времени после взлета предусматривается слив топлива из баков, например на самолетах Ту-104, Ту-114 и др.

Для восполнения запасов топлива и увеличения продолжительности полета на боевых самолетах применяется дозаправка топливом в полете от специальных самолетов-заправщиков. На пассажирских самолетах из соображений безопасности заправка топливом в полете не предусматривается.

На самолетах-истребителях из-за ограниченных объемов конструкции самолета основная масса топлива размещается в фюзеляже и дополнительно в крыле. Фюзеляжные баки имеют сложную форму, которая определяется местом их расположения. Они имеют относительно большую высоту, что способствует более полной выработке топлива. На этих самолетах фюзеляж имеет относительно небольшой свободный объем для топлива в связи с размещением в нем специального оборудования. Поэтому для увеличения запасов топлива применяются подвесные топливные баки.

Подвесные топливные баки на самолетах со стреловидным крылом устанавливают под фюзеляжем и консолями. На самолетах с малыми углами стреловидности крыла подвесные баки устанавливают на концах крыла, что объясняется наименьшим увеличением лобового сопротивления, эффективным увеличением площади крыла и разгрузкой крыла.

Емкость подвесных топливных баков колеблется от 500л до 5000 л, а на некоторых типах самолетов, например бомбардировщике В-58, где подвесной топливный бак выполнен в виде контейнера, подвешиваемого под фюзеляжем, достигает 10000 л.

Подвесные баки оказывают отрицательное влияние на летные характеристики самолета (ухудшаются маневренность и разгонные характеристики, увеличивается лобовое сопротивление, уменьшается высотность и т. д.).

Объем подвесных сбрасываемых баков для конкретного самолета определяется расходом топлива на неответственных участках траектории полета (запуск, опробование, руление, взлет, набор высоты, полет над своей территорией и т. д.). При необходимости на ответственных участках траектории полета (эволюции, воздушный бой) подвесные баки сбрасываются, не зависимо от наличия в них топлива.

Большое распространение на боевых самолетах получила заправка топливом в полете, которая позволяет увеличить продолжительность и повысить боевую эффективность самолета. Размещение топлива во всех свободных объемах крыла и фюзеляжа, а в некоторых случаях и в вертикальном оперении приводит к большому количеству топливных баков, расположенных в различных местах продольной оси самолета. Поэтому по мере выработки топлива из баков происходит изменение положения центра масс самолета.

При компоновке самолета выбирается такое расположение топливных баков, чтобы центр масс самолета, полностью заправленного топливом, располагался вблизи центра масс самолета, не заправленного топливом. В зависимости от компоновки самолета могут быть два варианта размещения топлива на самолете. Симметричное расположение, когда центры масс полностью заправленных баков находятся на одинаковом расстоянии х от центра масс самолета и объемы топлива W 1 и W 2 передних и задних баков (относительно центра масс самолета) равны между собой. Не симметричное расположение, когда объемы баков и их расстояние до центра масс самолета не равны, а равны только моменты масс баков:

ρW 1 X 1 = ρW 2 X 2 .

В первом случае расход топлива при необходимости поддержания постоянной центровки самолета должен производиться при сохранении равенства расходов из передних и задних баков (Q 1 = Q 2 ). При этом расход топлива из каждого бака должен быть пропорционален расходу топлива на двигатель:

Q 1,2 = ,

Q дв. - расход топлива на двигатель;

n - количество двигателей, питаемых из одного расходного бака;

k - количество одновременно вырабатываемых баков в расходный бак.

Неравномерность выработки в этом случае передних и задних баков, т. е. изменение центровки самолета, может происходить из-за различных расходов топлива двигателями и нестабильности гидравлических характеристик перекачивающих магистралей.

На самолетах, где топливо должно вырабатываться несимметрично, перекачка топлива производится с преимущественным расходом топлива из передних или задних баков.

При несимметричном расположении топлива, если не требуется компенсация центровки для сохранения равенства моментов, например при десантировании грузов, расход топлива производится или непрерывно пропорционально закону

Q 1 = или Q 1 = Q 2

или отдельными порциями в границах заданного поля центровок.

В общем случае центровка самолета при расходовании топлива из баков оценивается:

= /b сах,

где G i – запас (или выработка части топлива) i топливного бака;

x i – координата центра масс соответствующего топливного бака относительно носка средней аэродинамической хорды;

b сах, средняя аэродинамическая хорда.

Положение центра масс во время полета определяет необходимые характеристики устойчивости, управляемости при наименьших потерях топлива на балансировочное сопротивление на всех участках траектории полета.

Для самолетов с различной стреловидностью крыла рекомендуются следующие диапазоны центровок:

самолеты с прямым крылом 0,20…0,25;

самолеты со стреловидным крылом (χ=35 0 …40 0) 0,26…0,30;

самолеты со стреловидным крылом (χ=50 0 …55 0) 0,30…0,34;

самолеты с треугольным крылом

малого удлинения 0,32…0,36.

По функциональному назначению топливные баки, являющиеся частью конструкции самолета, подразделяются на расходные и основные. Основные топливные баки предназначены для размещения наибольшего объема топлива на борту. Эти баки могут размещаться в различных «свободных» местах самолета (с учетом необходимых требований), что приводит к их значительному количеству.

Расходные топливные баки, относящиеся к основной топливной системе, служат как для его размещения части топлива, так и для обеспечения двигателей топливом. Кроме того, установленная в них автоматика позволяет управлять порядком выработки топлива в пределах всей топливной системы. Расходные баки обычно размещаются вблизи центра масс самолета так, чтобы существенно не повлиять на изменение центровки самолета после выработки из них топлива.

Наиболее целесообразно располагать в расходных топливных баках заборные отсеки или отсеки отрицательных перегрузок, которые обеспечивают бесперебойную подачу топлива при любых возможных положениях и перегрузках самолета.

Кроме того, применение системы расходных баков позволяет:

а) простыми конструктивными методами обеспечить в расходных баках посадочный остаток топлива (резерв топлива);

б) при сложных схемах перекачки упростить контроль экипажем автоматики и обеспечить резерв времени в случае появления отказа в магистралях перекачки;

в) снизить и выравнить температуру топлива, подаваемого к двигателю;

г) конструктивно обеспечить дегазацию топлива, поступающего в расходный бак из очередных баков, и улучшить кавитационные характеристики насосов подкачки;

д) обеспечить частичный отстой топлива, поступающего к двигателям;

е) мощные насосы подачи топлива в двигатели устанавливать только в расходных баках, во всех остальных баках устанавливать перекачивающие низконапорные и, следовательно, и более легкие насосы.

Количество расходных баков обычно соответствует количеству двигателей, но в отдельных случаях могут применяться схемы с общим расходным баком для нескольких двигателей.

Схема магистралей перекачки зависит от количества топливных баков, их расположения на самолете, минимальной массы и надежности работы

Выполнение заданной программы перекачки топлива на маневренных самолетах требует от системы топливных баков, трубопроводов и агрегатов стабильности гидравлических характеристик вне зависимости от эволюции самолета в пространстве.

Из всех основных баков топливо перекачивается в расходные. При этом порядок перекачки топлива определяется необходимой центровкой самолета в полете и требованиями, выполнение которых необходимо для нормального функционирования самой топливной системы:

Порядок перекачки топлива должен обеспечивать поддержание расходного бака (баков) полным или почти полным до опорожнения всех других баков;

Во всех случаях остаток топлива в расходном баке (баках) к моменту опорожнения всех других емкостей не должен быть меньше резерва топлива,

Порядок перекачки топлива в расходный бак должен исключить попадание топлива в уже выработанные основные баки, так как по окончании выработки топлива из бака перекачивающий насос оголяется, выходит на нерасчетный режим и должен быть выключен экипажем или автоматически. Это же требование сохраняется и при подаче топлива в расходный бак из других баков под давлением воздуха (выдавливанием). В этом случае после окончания выработки топлива из бака наддув отключается и топливо, вновь попавшее в бак, останется невыработанным.

На самолетах-истребителях при отсутствии подвесных сбрасываемых баков начинать перекачку топлива в расходный бак следует из крыльевых баков. Объясняется это малой высотой и большой площадью крыльевых топливных баков, что затрудняет полную и равномерную выработку топлива из них, особенно при эволюциях самолета. Темп перекачки топлива из крыльевых баков обычно невелик, так как прокладка трубопроводов больших диаметров в тонких крыльях затруднительна. В крыльевых баках самолетов-истребителей перекачивающие насосы из-за их больших габаритов обычно не применяются, а подача топлива производится под давлением воздуха, повышение которого связано с увеличением массы конструкции и трудностями обеспечения герметичности баков-отсеков.

Необходимо отметить, что на некоторых типах самолетов-истребителей с целью разгрузки конструкции крыла, в полете первоначально топливо частично вырабатывается из фюзеляжных баков, а затем – из крыльевых.

5.6. СПОСОБЫ ПОДАЧИ ТОПЛИВА К ДВИГАТЕЛЯМ

Схемы

На выбор рациональной схемы подачи топлива к двигателям оказывают влияние: назначение и компоновка самолета, режимы его полета, тип и число двигателей, сорт применяемого топлива, мероприятия по обеспечению безопасности и высотности полетов. Сложность создания рациональной схемы подачи топлива к двигателям обусловлена: необходимостью размещения большого количества топлива в ограниченном объеме, обеспечения бесперебойной работы двигателей в большом диапазоне скоростей и высот полета, включения автоматических устройств, обеспечивающих заданную программу выработки топлива и контроль работы топливной системы.

Одним из важнейших фрагментов схемы магистралей подачи топлива к двигателям является выработка топлива из баков. Для обеспечения выработки топлива применяются следующие способы: самотеком, вытеснением, насосом подкачки

Выработка топлива из баков самотеком (рис. 5.4 а) применяется на самолетах со сравнительно маломощными ПД, где расходы топлива и потребное давление на входе в насос двигателя невелико. На самолете с двигателями, развивающими большую тягу (мощность), выработка топлива из баков самотеком применяется для переливания топлива из бака в бак, как сообщающиеся емкости (или в пределах одной группы, или в качестве аварийного перелива топлива).

Выработка топлива из баков вытеснением (рис. 5.4 б) осуществляется сжатым воздухом или нейтральными газами. Надтопливное пространство бака изолировано от окружающей атмосферы. Преимуществами такой выработки являются: возможность полета на большой высоте, отсутствие топливных насосов на самолете, возможность регулирования давления, отсутствие дренажа, потерь на испарение топлива и расхода энергии на привод насосов. Однако имеются существенные недостатки: большая масса нагруженных баков внутренним давлением и малая живучесть их при повреждении.

На современных самолетах гражданской авиации выработка топлива из баков только вытеснением не применяется, но в некоторых случаях возможен наддув топливного бака небольшим избыточным давлением (15…30 кПа). Такое избыточное давление получают от компрессора двигателя (через редуцирующее устройство) или за счет скоростного напора.

Выработка топлива из баков насосом подкачки (рис. 5.4 в) приводит к тому, что баки нагружены в меньшей степени, стенки их могут быть изготовлены более тонкими, а баки - легкими. Бак может быть расположен и ниже насоса подкачки, возможна автоматизация управления насосом. Подкачка позволяет создать достаточное давление на входе в основной насос двигателя, обеспечивая необходимую высотность. Недостатком способа является утяжеление топливной системы. У насосов подкачки с электрическим приводом повышенная пожарная опасность. Недостаточна высотность самих насосов. Для повышения надежности иногда в топливной магистрали устанавливаются два параллельно работающих насоса.

Системы перекачки топлива на самолете выполняют различные функции и могут быть подразделены на основную и вспомогательную.

Основная система перекачки топлива участвует непосредственно в цепи подачи топлива из очередных баков в расходный с подачей топлива, необходимой для питания двигателей.

Вспомогательные системы обеспечивают откачку топлива из дренажных бачков, выработку остатков топлива из баков и трубопроводов и т.д.

Система балансировочной перекачки обеспечивает создание необходимого балансировочного момента самолета. Наибольшее распространение получили системы перекачки топлива в расходные баки с центробежными электроприводными насосами. Такие системы применяются почти на всех отечественных и зарубежных самолетах.

На рис. 5.5 дана принципиальная схема топливной системы самолета. Она представляет многобаковую систему, обеспечивающую бесперебойную подачу топлива к двигателю на всех допускаемых режимах эксплуатации самолета. Эта схема, состоящая из ряда магистралей, отражает наличие основных, необходимых агрегатов и устройств, обеспечивающих надежную работу силовой установки. В зависимости от назначения, типа самолета и условий его эксплуатации состав топливной системы может варьироваться не только по номенклатуре самих подсистем, но и по входящим в них агрегатам. Поэтому представленную схему следует рассматривать, как функциональную.

В рассматриваемую схему входят:

Подкачивающая магистраль (подача топлива из расходного бака к двигателю);

Перекачивающая магистраль, обеспечивающая подачу топлива из крыльевых и фюзеляжных основных и подвесных топливных баков;

Дренажная магистраль.

Рассмотрим подачу топлива по предложенной схеме (см. рис. 5.5). Топливо из расходного бака 1 поступает в топливозаборник отсека отрицательных перегрузок 8. При действии отрицательных перегрузок топливо, занимая верхнее положение, беспрепятственно будет поступать в заборный патрубок вплоть до полной выработки отсека. Его заполнение происходит при возвращении самолета к нормальному полету через клапаны 9. Последние исключают выливание

Рис.5.5 Принципиальная схема топливной системы самолета 1 - расходный топливный бак, 2 -фюзеляжный топливный бак, 3. - крыльевые топливные баки, 4 - подвесной топливный бак, 5 - подкачивающая магистраль, 6 - перекачивающая магистраль, 7 - аварийная пере­ливная магистраль, 8 - отсек отрицательных перегрузок, 9 - клапан отсека отрицательных перегрузок, 10 -подкачивающий центробежный насос (ГШН), 11 - двигательный центробежный насос (ДЦН), 12 - обратный клапан, 13-топливный аккумулятор, 14 -топливно-масляный аккумулятор, 15 - термо клапан, 16-фильтр тонкой очистки, 17 - перекрывной (противопожарный) кран, 18 - датчик расходомера, 19,21 - поплавковые гидроклапаны, 20 - перекачивающий центробежный насос, 22 - топливный клапан с сервоприводом,23 -гидроклапан выработки топлива, 24 - гидроклапан дренажа крыльевых топливных баков, 25 - дренажная магистраль, 26 - предохранительный клапан, 27 - линия командного давления выработки топлива, 28 - линия командного давления дренажа крыльевых топливных баков,29-сигнализатор давления, 30 - датчик аварийного остатка топлива.

топлива из отсека при некоторых эволюциях самолета. Следует отметить, что отсеки отрицательных перегрузок устанавливаются на пилотажных машинах, а их объем обеспечивает работу двигателя в течение (15…30)с действия отрицательных перегрузок.

Подается топливо к двигателю подкачивающим насосом 10. Для повышения надежности работы в расходных баках устанавливают, как правило, по два насоса с обязательной установкой обратных клапанов на их выходе. При отказе одного из насосов его обратный клапан перекроет перелив топлива обратно в бак от работающего насоса. Дублирующий насос работают или параллельно с основным, или имеет автономное управление и включаются в случае выхода из строя основного насоса.

В качестве дублирующих обычно применяют однотипные насосы, но известны системы с дублирующими насосами, имеющими неэлектрический привод (эжекторные или турбоприводные насосы). В последнем случае может обеспечиваться также перекачка топлива в аварийном случае при отказе системы электропитания самолета.

На самолетах, имеющих большие расходы топлива, в отдельных случаях в качестве основных насосов перекачки топлива применяются центробежные насосы с приводом от воздушной или гидравлической турбины.

В последнее время широкое распространение в системах перекачки топлива (особенно в режиме доработки) получили струйные насосы.

На современных самолетах для обеспечения надежной подачи топлива к двигателям (в том числе и для исключения кавитации на входе в основной насос двигателя) применяется многоступенчатая подкачка. Обычно обходятся одним насосом подкачки первой ступени (НП1) 10и одним насосом подкачки второй ступени на двигателе (НП2) 11. При этом НП1 создает необходимое давление на входе в НП2, а последний обеспечивает потребное давление на входе в основной насос двигателя (ОНД). Преимуществами такой двухступенчатой подкачки является меньшая суммарная масса НП1 и НП2 и также меньшая мощность на их привод по сравнению с одним насосом подкачки, обеспечивающим потребное давление на входе в ОНД. Кроме того, такая схема включения насосов позволяет подавать топливо из расходного бака при меньших давлениях, что разгружает трубопроводы подкачивающей магистрали и исключает возникновение течи топлива.

Топливный аккумулятор 13 может выполнять двоякую функцию: обеспечить подачу топлива из расходного бака (в случае отсутствия отсека отрицательных перегрузок) при действии отрицательных перегрузок и гашения колебаний расхода и давления топлива на переходных режимах.

Топливный аккумулятор состоит из двух полостей, разделенных гибкой резиновой мембраной - воздушной полости и топливной полости. В воздушную полость подается давление воздуха (или газа), несколько меньшее давления, создаваемого топливным насосом расходного бака. Топливная полость сообщена с магистралью питания двигателя, За насосом расходного бака 10, устанавливается обратный клапан 12, пропускающий топливо только в сторону двигателя. При работе насоса за счет гибкой резиновой мембраны аккумулятор заполняется топливом и давлением топлива поддерживается в заполненном состоянии. При падении давления за насосом (уменьшение или прекращение подачи топлива) топливный аккумулятор компенсирует его подачу из своей полости. После восстановления давления за насосом расходного бака аккумулятор вновь заполняется топливом. Длительность действия отрицательных перегрузок и их величина зависят от предназначения самолета и режимов его полета.

На самолетах с ТРД в топливные системы включается топливно-масляные радиатор 14, охлаждающий масло маслосистемы самолета протекающим топливом. При этом нагретое топливо лучше распыляется в форсунках двигателя, предохраняет фильтр 16от возможного обмерзания. Если для питания двигателя требуется расход топлива меньше, чем для охлаждения масла в топливно-масляном радиаторе, то часть топлива, пройдя радиатор, перепускается посредством термоклапана 15, обратно в бак. Фильтр тонкой очистки топлива 9 обязателен во всех топливных системах. Тонкость фильтрации составляет около 15 мкм. При возможном его засорении топливо, минуя фильтроэлемент, поступает к двигателю по перепускному каналу, предусмотренному в конструкции самого фильтра.

Перекрывной (пожарный) кран 17 предназначен для прекращения подачи топлива к двигателю в аварийных ситуациях (пожар, посадка на «живот» и т.д.). Он имеет дистанционный сервопривод на закрытие. Открывается только на земле. Контрольно-измерительная аппаратура представлена датчиком аварийного остатка топлива 30, манометром или сигнализатором давления 29, расходомером 18.

При значительном количестве топлива для его размещения требуются большие баки. Затруднения при монтаже таких баков заставляют использовать сравнительно небольшие баки, но число их соответственно увеличивается. Для организации рациональной подачи топлива к двигателям с малыми гидравлическими потерями давления, небольшой массой магистралей и для обеспечения необходимого диапазона центровки баки объединяют в группы 2, обычно путем их последовательного соединения по схеме сообщающихся сосудов.

Причем таких групп может быть несколько и выработка топлива из каждой группы осуществляется своим перекачивающим насосом 20.

Уровень наполнения расходного бака контролируется клапаном 22. При наличии нескольких групп, каждая из них подключается к своему клапану, при этом порядок выработки топлива среди групп будет зависеть от уровня установки этих клапанов.

Поплавковый клапан (рис. 5.6) служит для предохранения расходного бака от переполнения при перекачке топлива из основных топливных баков.

Устанавливается клапан внутри расходного бака в верхней его части. Клапанный узел помещен в корпус 1. Разъем между корпусом и крышкой 5 герметизируется резиновой прокладкой 4. Внутри корпуса находится клапан-демпфер 2, перекрывающий доступ топлива в бак. Он состоит из грибкового клапана 20, и ряда деталей, собранных в один узел. При гидравлическом ударе клапан 2 перемещается в поршне вниз, отходит от седла корпуса и стравливает избыточное давление в бак. При достижении определенного уровня топлива в расходном баке клапан-демпфер 2 перекрывает доступ топлива в бак под действием пружины 3 и давления топлива в момент перекрытия клапаном 6 отверстия в крышке 5. При снижении уровня топлива в баке рычаг с поплавком клапан 6 открывается, что вызывает снижение давления под поршнем 18. Под давлением топлива клапан-демпфер 2, сжимая пружину 3, отходит от седла, открывая проходное сечение и топливо

через окна в корпусе 1 выливается в бак и заполняет его. При заполнении бака, когда поплавок занимает верхнее положение, клапан 6 перекрывает отверстие в крышке 5. Через жиклер в клапане 20 топливо протекает во внутреннюю полость клапана и своим давлением совместно с пружиной 3 прижимает клапан-демпфер к седлу, перекрывая поступление топлива в бак. Из крыльевых баков 3 и подвесного бака 4 топливо вылавливается под избыточным давлением, отбираемым либо от двигателя или баллонов сжатого газа.

По схеме выработка из бака 4 осуществляется в первую очередь с помощью поплавкового гидроклапана 19 и гидроклапана выработки топлива 23, их принципиальные схемы даны соответственно на рис.5.7 и 5.8.


При снижении уровня топлива в баке 1 поплавок 4 (см.рис.5.7) опускается вниз и шариковый клапан 2 перекрывает сброс топлива (отбор последнего осуществляется от насоса 10). Это вызывает рост давления в командной магистрали 6, которая подключена к мембранной коробке 1 гидроклапана (см. рис.5.8). Под действием избыточного давления мембрана 4, преодолевая усилие пружины 3, открывает клапан 6, чем обеспечивает подачу топлива в расходный бак. При достижении необходимого уровня топлива в расходном баке поплавок 4 (см. рис.5.7) откроет шариковый клапан, давление в командной магистрали упадет и клапан 23 (см. рис.5.5) перекроет подачу топлива из подвесного бака. После опорожнения подвесного бака гидроклапан выработки 23 будет находиться в открытом состоянии.

Выработка топлива из крыльевых баков контролируется гидроклапаном 21 и его поплавок установлен на более низком уровне топлива в расходном баке. При уменьшении уровня топлива, ниже заданного, в командной магистрали 28 возрастает давление, которое закрывает клапан 3 (см. рис. 5.9), отсекая полости крыльевых баков от общей системы дренажа. В крыльевых баках возрастает давление, под действием которого вытесняется через открытый клапан 23 и повышает уровень топлива в расходном баке 1. После чего гидроклапан 22 сбрасывает давление в командной магистрали 28. Клапан сброса командного давления 24 соединяет полости крыльевых баков с дренажем и подача топлива прекращается.

5.7 ТОПЛИВНЫЕ НАСОСЫ.

Насосы, применяемые в топливных системах самолетов, должны обеспечивать в зависимости от типа самолета подачу топлива от 0,3 до 100 м 3 /ч и более при сравнительно невысоком давлении (не более 200 ...250 кПа) и небольших подпорах на входе. Они должны быть надежными в работе, иметь малые массу и габаритные размеры и большой ресурс работы. Кроме того, к топливным насосам предъявляются специальные требования, обусловленные температурой топлива и окружающего воздуха, величинами перегрузок, положением агрегата в пространстве и т.д. Из большого количества существующих в настоящее время типов насосов наиболее полно соответствуют этим требованиям лопастные и струйные насосы.

Лопастные (центробежные) насосы по сравнению с объемными имеют ряд преимуществ:

Работают при значительной частоте вращения рабочего колеса;

Обладают высокой производительностью;

Характеризуются малыми габаритами и небольшой массой;

Упрощается соединение крыльчатки с приводом (как, правило, напрямую), что устраняет сложные передаточные механизмы;

Обеспечивают свободное протекание топлива при неподвижной крыльчатке.

Все эти преимущества и относительно высокий к.п.д. делают лопастные насосы надежными в работе и удобными в эксплуатации.

Струйные насосы по сравнению со всеми перечисленными типами насосов имеют наименьшую массу и большую надежность, но обладают не всегда удовлетворительными характеристиками по экономичности из-за малых значений к.п.д.

Центробежные топливные насосы приводятся в действие с помощью различных типов приводов. Непосредственный привод от вала авиадвигателя наиболее надежен и экономичен, но может быть использован только для насосов, установленных непосредственно на авиадвигателе, например насосов второй ступени подкачки топлива. Для всех остальных топливных насосов применяются различные приводы: электрические, гидромоторные и пневмотурбоприводы.

Топливные насосы с приводом от электродвигателя .

Широкое распространение получили внутрибаковые электроприводные центробежные насосы (ЭЦН) (рис.5.10). Основным преимуществом этих насосов является возможность их размещения внутри бака с использованием топлива для охлаждения электродвигателя.

Надежность и ресурс работы внутрибаковых ЭЦН во многом зависит от степени герметичности и, следовательно, от совершенства конструкции уплотнений вращающихся деталей. Охлаждение уплотнительной манжеты осуществляется топливом, просачивающимся между манжетой и валом насоса. Просачивающееся топливо, попадая на центробежный отражатель 4, закрепленный на валу, отбрасывается к дренажному каналу 10, к которому подсоединяется трубка, свободный конец которой выводится за борт самолета в область пониженного давления.

Насосы с приводом от электродвигателей имеют достаточно высокую надежность. В подкачивающих и перекачивающих топливных насосах на случай выхода из строя привода подача топлива обеспечивается самотеком (благодаря подсосу последующей насосной ступенью) по внутренним каналам крыльчатки.

В качестве привода центробежных насосов наибольшее распространение получили электродвигатели постоянного тока со смешанным возбуждением и трехфазные асинхронные двигатели переменного тока. Необходимо отметить, что ресурс электропривода постоянного тока определяется надежностью щеточно-коллекторного узла.

Большим преимуществом электродвигателей переменного тока благодаря отсутствию коллектора и щеток является безотказность в работе в сильно разряженной атмосфере с пониженной влажностью (большие высоты). Недостатками электродвигателя переменного тока являются строго регламентированные частоты вращения и меньший, чем у двигателей постоянного тока, пусковой момент, что в некоторых случаях ограничивает их применение.

Топливные насосы с пневмотурбоприводом. Потребная мощность привода насосных агрегатов в некоторых случаях может превышать (7... 10) кВт.

Пневмотурбопривод обладает небольшой массой и габаритными размерами при больших мощностях, высокой надежностью и отсутствием влияния привода на тепловой баланс топлива. Этим объясняется широкое распространение такого типа привода на сверхзвуковых самолетах с высокими температурами топлива на входе в двигатель.

Применение насосов с приводом от воздушной турбины позволяет уменьшить мощность агрегатов, установленных непосредственно на двигателе. При этом уменьшается мидель силовой установки и ее масса.

Струйные насосы. На самолетах с ГТД при наличии на борту высоконапорного топлива из линии перепуска основных и форсажных насосов двигателя струйные насосы благодаря простоте их конструкции, удобству в эксплуатации, надежности в работе и практически неограниченному ресурсу получают все большее распространение.

Принципиальная схема установки и питания струйного насоса I ступени подкачки топлива показана на рис.5.11. В такой схеме топливо из расходного бака поступает в струйный насос и далее подается к центробежному насосу второй ступени подкачки. Высоконапорное топливо в струйное сопло насоса поступает по трубопроводу 6 из контура постоянного перепуска насоса-регулятора ТРД. Электроприводной насос, размещенный в топливном баке, подключен трубопроводом 7 к магистрали между струйным насосом и насосом П ступени подкачки и обеспечивает подачу топлива на режимах приемистости двигателя.

Возможны схемы питания струйных перекачивающих насосов за счет резервной мощности подкачивающих насосов I ступени, установленных в расходном баке, поскольку их полная производительность используется лишь в течение короткого времени на режиме набора самолетом высоты.

На рис. 5.12. приведены данные КПД эжектора для различных значений, коэффициента смешения q см и различных коэффициентов размерных соотношений m. Как видно из этих графиков, максимально возможный КПД струйного насоса составляет 27 % при q 0 = 2,25 и m = 7.75.

Значения КПД струйного насоса (25...27) % могут быть получены только при постоянных значениях коэффициента смешения q c м и коэффициента размерных соотношений m , что может быть реализовано в некоторых случаях только для перекачивающих насосов. Получить высокие значения КПД для струйных насосов I ступени подкачки, для которых характерны переменные значения коэффициента смешения q см , можно только при применении специальных систем регулирования соотношения размеров сечения сопла и смесительного трубопровода (при переменном значении коэффициента m ).

5.8. КАВИТАЦИЯ

Кавитация (от латинского cavitas – пустота) произвольный переход жидкой фазы топлива в парообразную, когда статическое давление в жидкости сравнивается с давлением насыщенных паров.

В магистралях авиационных силовых установок кавитация может возникнуть в связи с уменьшением внешнего давления при увеличении высоты полета. В начальной стадии паровая фаза представлена мелкими пузырьками; затем происходит укрупнение пузырьков, которые в горизонтальной трубе движутся в верхней части сечения и, наконец, возможно разделение паровой и жидкой фаз и разрыв струи.

Наибольшее давление паров, находящихся над жидкостью, которое устанавливается при выделении пара в закрытом сосуде при данной температуре, называется давлением насыщенных паров (p t). Для однокомпонентной жидкости величина p t зависит только от температуры и физических свойств данной жидкости и не зависит от объемного соотношения паровой и жидкой фаз, для многокомпонентной жидкости - не только от температуры, но и от соотношения паровой и жидкой фаз (с уменьшением объема, занятой паровой фазой, давление насыщенных паров вырастает). При испытаниях авиационных топлив в лабораториях принято стандартное отношение паровой и жидкой фаз, равное 4/1. . На графиках рис. 5.13 даны значения р t для различных топлив.

С ростом температуры давление насыщенных паров одно- и многокомпонентных жидкостей увеличивается, но у разных жидкостей в разной степени. Для характеристики давления насыщенных паров жидкости одним числом, условно принята температура 37,8°С = 100°F, при которой давление называют давлением по Рейду и обозначается p Rid . Эта величина является физической характеристикой конкретного топлива и находится по справочным данным.

С увеличением высоты полета уменьшающееся атмосферное давление приводит к падению давления в баках и топливных магистралях, при этом в надтопливное пространство выделяется большее количество воздуха и газовых включений, которые уносят с собой пары топлива. Если внешнее давление выше давления насыщенных паров топлива, то испарение топлива с поверхности несущественно влияет на размеры и интенсивность выделения пузырьков воздуха; если внешнее давление ниже давления насыщенных паров топлива, то начинается внутреннее испарение (кипение) топлива, которое начинается тем раньше, чем выше давление насыщенных паров топлива.

В начальной стадии небольшое снижение давления приводит к выделению растворенного в топливе воздуха, который появляется в потоке топлива в виде мелких пузырьков, приблизительно равномерно распределенных по объему движущейся жидкости (рис. 5.13а, а ).

При дальнейшем снижении давления происходит выделение из жидкости паров легкокипящих фракций топлива. Пузырьки, в основном, состоят из паров топлив, а поток жидкости становится двухфазным; с последующим укрупнением пузырьков. В горизонтальной трубе они движутся преимущественно в верхней части сечения (рис. 5.13а, б ). Наконец, возможны случаи полного разделения паровой и жидкой фаз и движение их осуществляется самостоятельными потоками (рис. 5.13а, в ).

При глубоком снижении давления вся жидкость переходит в парообразное состояние, что приводит к нарушению сплошности потока и возникновению паровых “пробок”. Это вызывает прекращение подачи жидкости (рис. 5.13а, г ).

Отрицательные последствия заключаются в снижении пропускной способности магистрали (вплоть до полного срыва подачи), возникновении колебательных процессов течения топлива и кавитационного разрушения элементов топливной системы.

Колебания расхода вызвано тем, что паровая пробка, попав в крыльчатку насоса, практически полностью прекращает его производительность. Это приводит к снижению скорости потока и росту статической составляющей давления, превышающего упругость паров топлива. Это вызывает их конденсацию, жидкость становится однофазной, подача топлива восстанавливается и процесс повторяется.

Кавитационное разрушение поверхностей объясняется следующим. В процессе турбулентного течения топлива, имеющиеся паровые пузырьки оказываются на поверхности стенки в пограничном слое, где статическое давление превышает упругость пара. В результате конденсации пузырька в месте контакта создается местный гидроудар, приводящий к удалению поверхностной защитной окисной пленки. Со временем этот участок вновь окисляется и процесс повторяется снова. Таким образом, поверхность подвержена эррозионно-коррозонному разрушению.

5.9. КАВИТАЦИОННАЯ ХАРАКТЕРИСТИКА ЦЕНТРОБЕЖНЫХ НАСОСОВ

Кавитационной характеристикой центробежного насоса (рис.5.14) называется зависимость действительной производительности Q д в зависимости от давления на его входе P вх . Кавитационные явления чаще всего возникают на входе в насосы.

Кавитационные характеристики, определяются опытным путем и снимаются при постоянной частоте вращения крыльчатки насоса и постоянным перепадом давления на его выходе и входе ∆Р нас =Рвых. - Р вх =const. Эти характеристики приводятся для конкретного топлива и эксплуатационной температуры.

Кавитационные явления чаще всего возникают на входе в насосы. Кавитационные свойства насоса определяются кавитационными характеристиками, которые определяются испытаниями и устанавливают зависимость между давлением на входе и подачей насоса (рис. 5.14). Эта характеристика приводится для данной жидкости при некоторой постоянной значениях частоте вращения

Рис.5.14 Кавитационная (высотная характеристика центробежного насоса)

вала насоса и температуры. Для определения подачи насоса при испытаниях поддерживают постоянный перепад давления и наоборот, для определения перепада давления, создаваемого насосом, поддерживают постоянную подачу.

Расчет топливной системы на высотность заключается в определении условий бескавитационной работы топливной системы. Основная величина, определяющая нормальную работу топливной системы, давление. на входе в топливный насос р вх , которое, во избежание появления кавитации, должно превышать упругость паров топлива р t на некоторую величину.

Потребное давление на входе в насос р вх потр однозначно определяется по имеющейся кавитационной характеристике при заданном минимально допустимом расходе топлива Q min .

При отсутствии кавитационной характеристики р вх потр определяется расчетным путем:

р вх ≥ р t + Δ р кав . (5.4)

Здесь Δ р кав - кавитационной запас давления, превышающий упругость паров топлива, может быть определен двумя различными способами – расчетным и использованием опытных данных.

Расчетный вариант оценивается по формуле С.С. Руднева:

Δ р кав =ρg 10, (5.5)

где Q - подача насоса, м 3 /с;

n – частота вращения рабочего колеса, об/мин;

с – коэффициент кавитации: для насосов с плохими кавитационными свойствами с =600…700, обычных насосов с =800…1000; и насосов с хорошими свойствами с =1000…1500.

Это условие должно выполняться на всех режимах полета самолета при всех перегрузках и температурах топлива. Величина потребного кавитационного запаса для различных насосов меняется в очень широких пределах от сотых долей атмосферы до нескольких атмосфер, в зависимости от типа насоса, режима его работы, быстроходности, и т. д.

Даже для одного и того же насоса, в зависимости от расхода, условий работы и предъявляемых к нему требований, потребный кавитационный запас может существенно изменяться.

Сточки зрения требований к производительности перекачивающего насоса и создаваемому им давлению, его работа даже в зоне заметно развитой кавитации может оказаться удовлетворительной. Однако, пониженное давление на всасывании для насосов подкачки недопустимо, так как при этом возникают резкие колебания давления в системе, приводящие к нарушению работы автоматики и т.д. Кроме того, резкие колебания давления могут вызвать эрозионный износ насосов двигателя и, в частности, плунжерных пар.

В ряде случаев потребный кавитационный запас должен исключать даже малые признаки кавитации, не оказывающие влияния на протекание основных характеристик насоса.

Насосы перекачки могут работать с довольно малыми давлениями на всасывании, то есть в области существенной кавитации на входе, при условии, что они должны обеспечивать потребный расход топлива.

Величина наддува топливных баков большей частью определяется требованиями к основным насосам подкачки, установленным в расходных баках, хотя по условиям работы насосов перекачки наддув баков в большинстве случаев мог бы быть меньше.

Потребные кавитационные запасы давления Dр кав для различных насосов в большинстве случаев определяются экспериментальным путем.

Ниже приводятся осредненные статистические (опытные) данные по кавитационным запасам давления для насосов топливной системы.

Для насосов невысокого давления (100…150) кПа и умеренной производительности (баковые насосы подкачки и перекачки) Dр кав =(10…25) кПа. Для ДЦН (промежуточные насосы подкачки, устанавливаемые на двигателе) -Dр кав =(60…80) кПа.

Для насосов высокого давления (насосы-регуляторы) - Dр кав = (150…250) кПа.

Чтобы уменьшить выделение воздуха из топлива для самолетов с большой скороподъемностью увеличивают кавитационный запас (запас по давлению в баках) примерно, на (70 … 100) мм рт. ст.

Для улучшения кавитационных характеристик насосов подкачки (и других центробежных насосов) перед рабочим колесом (крыльчаткой) устанавливают внутренний насос подкачки (преднасос) в виде осевой или шнековой ступени (рис. 5.6).

Преднасос, благодаря низкому давлению, создаваемому им и пониженным нагрузкам на лопасти не требует таких больших давлений на всасывании как основные, более нагруженные ступени. Вместе с тем лопастное колесо преднасоса создает за собой закрутку топлива, чем обеспечивает понижение относительной скорости входа жидкости в центробежную ступень, которая в основном определяет местное разрежение на входе в колесо и тем самым потребный кавитационный запас.

Установленная в качестве преднасоса сепарирующая крыльчатка пропускает расход больше, чем основная центробежная ступень, и вместе с избытком топлива, отводимым между ступенями обратно в бак, удаляются и пузырьки воздуха и газа, выделившегося из топлива. Все это улучшает кавитационные характеристики насоса.

В этих случаях насосы требуют совершенно ничтожных кавитационных запасов, вплоть до удовлетворительной работы насоса подкачки на кипящей и, особенно, воздуховыделяющей жидкости.

Все эти качества сепарирующих крыльчаток проявляются в полной степени только в тех случаях, когда излишек производительности преднасоса вместе с захваченными им пузырями пара и воздуха может свободно отсепарироваться в полость бака. Если же этой возможности нет или она затруднена, то часто установка такой осевой ступени оказывается даже вредной.

5.10. ОСНОВЫ РАСЧЕТА ТОПЛИВНОЙ СИСТЕМЫ

Расчет топливной системы сводится к следующему:

Определение потребной емкости баков;

Определение необходимых объемов воздушных подушек, особенно для закрытых систем;

Расчеты, связанные с порядком выработки топлива из баков и обеспечением центровки самолета;

Расчет топливной системы на высотность.

Высотностью топливной системы называется предельная высота полета, до которой обеспечивается бесперебойная подача топлива к основным насосам двигателя с необходимым давлением и требуемым расходом.

Поскольку с первого по третий пункты полностью решаются в процессе предварительных эскизных компоновок самолета, далее эти вопросы не рассматриваются и считается, что в расчете топливной системы заданными являются емкости баков, их конфигурация и размещение на самолете, а также потребный порядок выработки топлива.

Требования при расчете высотности топливной системы

Технические условия должны предусматривать самые невыгодные из возможных режимов условия эксплуатации самолета:

Принципиальную и монтажную схемы топливной системы с их геометрическими и гидравлическими характеристиками;

Максимальные расходы топлива Q ;

Наиболее высокие (а иногда самые низкие) расчетные температурные условия топлива t (РаТУ);

Максимальные высоты полета H рас;

Наибольшую скороподъемность;

Максимальные перегрузки n x , n y и n z .

Напорные и кавитационные характеристики насосов ТС самолета.

Дополнительно должны быть известны:

физические характеристики топлива – плотность r , коэфф. кинематической вязкости n , давление насыщенных паров топлива при эксплуатационной температуре Р t .

Рассчитываются участки магистрали, находящиеся в наименее благоприятных условиях подачи топлива (по длине трубопроводов и относительной высоте одного объекта над другим). Поэтому расчетная схема топливной системы должна давать представление о протяженности магистралей и взаимном расположении агрегатов. Исходя из наименее благоприятных условий, берется случай, когда топливо в баке на исходе (т. е. уровнем топлива в баке следует пренебречь).

В общем случае расчеты выполняются для ряда режимов. Необходимо проверить работу магистралей подачи топлива в наиболее тяжелых условиях работы. Таковыми являются разбег и разгон самолета до скорости отрыва, взлет и набор высоты на максимальном режиме, горизонтальный полет на высоте заданного эшелона. Перегрузки п определяются из аэродинамических расчетов. Если этих данных нет, то для самолетов гражданской авиации можно принять:

п у =(+4…-0,5); п х =±0,3; п z =0.

Зависимость объемного расхода топлива двигателем от высоты полета (рис. 5.15) указана в его характеристиках.

Необходимые режимы работы двигателей определяются аэродинамическими расчетами. Для расчета высотности ВС гражданской авиации с работающими НП1 рекомендуется принять характер изменения объемного расхода топлива по линии абв, соответствующей максимальному режиму, а для расчета высотности с неработающими НП1 - по линии абгд, где участок гд - крейсерский режим.

Расчет ТС можно подразделить на два варианта: проектировочный и проверочный.

5.10.1. Проектировочный расчет высотности ТС.

Он сводится к оценке источников давления (величины наддува в топливном баке Δр б . и давления за подкачивающим насосом р нас .), которые, преодолев все гидравлические потери по тракту топливной магистрали, обеспечивали бы потребное давление на входе в основной топливный насос двигателя.

Расчет ТС базируется на уравнении Бернулли, записанного для двух сечений 1-1 и 11-11, высота уровней соответствующих сечений y 1-1 и y 11-11 оценивается относительно произвольно взятой базовой плоскости 0-0. Все обозначения даны на расчетной схеме рис.5.16.

р 1 +y 1 ρg+ =p 11 +y 11 ρg+ +Δp, (5.6)

где p 1 - давление в надтопливном пространстве;

V 1 - вертикальная скорость перемещения жидкости в баке;

V 11 - скорость движения топлива на выходе из топливной системы;

Δp - потери давления по тракту подкачивающей магистрали.

Здесь можно принять V 1 , исходя из FVρ= сonst , то ,а F 1 >>F 11 и V 1 <.

Тогда (5.6) можно записать:

p 1 =p 11 +(y 11 - y 1) ρg + +p трен. +p местн. +p ин. , (5.7)

где p трен. , p местн. , p ин. соответственно потери давления от трения, от преодоления местных сопротивлений и инерционные давления.

Статическое давление в сечении 1-1определяется давлением атмосферы p H , соответствующей заданной высоте полета H, и величиной наддува топливного бака Dp б . : p 1 =p H +Dp б. .

Наддув баков (Dp б.) не следует делать больше минимально необходимого, так как это вызывает неоправданное увеличение массы баков (или контейнеров - в случае мягких баков) особенно, если в конструкции присутствуют баки с более или менее плоскими стенками.

Для несущих баков наддув можно принять несколько увеличенным, так как влияние внутреннего давления на вес баков в этом случае существенно снижается. Встречаются даже случаи при очень тонкостенных баках или при передаче стенкой бака тяги двигателя, когда повышение внутреннего давления улучшает условия работы конструкции несущего бака и даже приводит к снижению его веса.

Обычно для самолетов с насосной подачей принимается Dp б max 30 кПа . В случае вытеснительной подачи - Dp б. = 80 кПа.

Давление p 11 есть ничто иное, как потребное давление на входе в насос (ДЦН или основной насос двигателя) p вх потр. и может быть определено по выражению (5.4) или по имеющимся кавитационным характеристикам.

Выражение (5.7) запишется в следующем виде, если считать левую часть уравнения источниками давления, а правую - потерями:

p H +Dp б. = p вх потр. ± yrg + p трен. + p мест. +р ин. + , (5.8).

Гидростатическое давление . В случае горизонтального полета гидростатическое давление yrg определяется высотой y (см. рис. 5.16). Знак «+» берется в случае принижения уровня топлива в баке относительно выходного трубопровода ТС и в противном случае – знак «-»

В полете с некоторым углом j к горизонту y находится как превышение зеркала топлива в расходном баке над окончанием топливной системы самолета и запишется в следующем виде:

y = -h топл ± , (5.9).

где h топл -превышение высоты топлива над заборным патрубком бака;

l x и l y –проекции длин трубопроводов (при сложной пространственной схеме) на соответствующие координатные оси самолета.

Знаки перед суммой определяются по следующему правилу: если топливо в трубопроводах течет по направлению земного тяготения, то берется знак «-» и в противном случае – знак «+»

Гидравлические потери. Путевые потери давления p трен. вызываются трением жидкости о стенки трубопровода и выражается:

p трен. = , (5.10)

где l – длина трубопровода,

d - гидравлический диаметр диаметр трубопровода.

Здесь же для турбулентного течения коэфф. трения , число Рейнольдса Re=Vd/ν , где ν – коэфф. кинематической вязкости топлива при эксплуатационной температуре топлива.

В проектировочных расчетах V принимается равной (1…2) м/с при движении топлива самотеком и (4…7) м/с при насосной подаче. Потребный диаметр d при заданной прокачке топлива Q определится:

d= , (5.11)

Полученное значение d округляется до стандартного значения, далее оценивается p трен (формула 5.10) по истинным величинам V n

В направлении осей х и z перегрузки обычно невелики, но зато длины трубопроводов могут быть большими. Как правило, все же наиболее существенной оказывается перегрузка в направлении оси у, доходящая в отдельных случаях до расчетных значений п у = (10… 12)

Для расчета необходимо брать предельно неблагоприятный случай, когда все давления относятся к категории потерь.

Теперь, когда определены все составляющие потерь, из (5.8) можно найти величину источника давления:

Dp б. = p вх. потр. ± yrg + p трен. + p мест. +р ин. + - p H . (5.14)

Если полученное значение Dp б > 30 кПа, то в систему необходимо включить подкачивающий насос с давлением на выходе р нас.

В этом случае выражение (5.14) примет вид:

р нас. = p вх. потр. ± yrg +(p трен.) 1 +(p мест.) 1 + +() 1 -(p H +Dp б) . (5/15)

В (5.15) значения (p трен.) 1, (p мест.) 1 и () 1 определить при новых значениях скоростей, соответствующих насосной подаче топлива [принимается V= (4…7) м/с]. Полученное значение р нас. соответствует одному расчетному режиму Работы силовой установки.

5.10.2.Проверочный расчет высотности ТС (полет на потолке) .

Полет на потолке предполагает равномерный и горизонтальный полет. В этом случае инерционные потери давления р ин. равны нулю.

Особым случаем расчета топливной системы является проверочный расчет ее высотности на высотах существенно выше статического потолка самолета в связи с тем, что для скоростных самолетов с высокой энерговооруженностью динамический потолок может значительно отличаться от статического.

Для некоторых (например, опытных) самолетов остановка двигателей на предельных высотах в ряде случаев допустима, поскольку после выполнения задания самолет может снизиться до умеренных высот, на которых система запуска позволяет произвести надежный запуск двигателей и продолжать полет. Для боевых самолетов необходимость существенного снижения высоты полета для запуска двигателей может полностью уничтожить все преимущества, получаемые за счет превышения статического потолка путем использования накопленной кинетиче

Дренаж топливных баков поддерживает в топливных баках заданное избыточное давление для: обеспечения бескавитационной работы насосов; обеспечения минимального внутреннего и внешних давлений на стенки баков; регулирования давления воздуха в баках при их заправке топливом и сливе его.
Систему выработки топлива условно можно разбить на систему перекачки топлива и систему подачи его к двигателям. Схема подачи топлива к двигателям определяется количеством топливных баков, двигателей и их компоновкой на самолёте.
На многодвигательных самолётах применяются общие (централизованные), раздельные и автономные системы подачи топлива (см. рис. 8.1.). В общей системе топливо подается через расходный бак ко всем двигателям. В раздельных системах топливо подаётся к каждому двигателю от определённой группы баков. Автономные системы обеспечивают питание каждого двигателя из своего бака. Подача топлива к двигателям осуществляется из расходного (расходных) отсека с помощью насосов подкачки.
В расходном баке размещаются, как правило, два насоса подкачки, которыми топливо подаётся к двигателям, датчики топливоизмерительной аппаратуры, элементы предохранения бака от переполнения при перекачке в него топлива из других баков, а также устройства, разгружающие стенки бака от чрезмерного давления. Бесперебойная работа двигателя на режимах полёта с нулевыми или отрицательными перегрузками обеспечивается встроенным в конструкцию расходного топливного бака противоперегрузочным отсеком, в котором устанавливается насос подкачки, либо топливным аккумулятором. Принцип действия противоперегрузочного отсека основан на том, что топливо из бака свободно поступает в отсек и заполняет его, но при отливах топлива в расходном топливном баке оно из отсека уйти не может. Объём отсека обеспечивает работу насоса в течение заданного расчетного времени действия перегрузок, в результате которых произошёл отлив топлива в расходном топливном баке.
Подача топлива к насосам высокого давления двигателей для обеспечения их бескавитационной работы производится при двухступенчатом повышении давления. Вначале давление повышается баковыми насосами подкачки, а затем двигательным насосом. В магистралях подачи топлива в двигатели устанавливаются обратные клапаны, краны кольцевания, топливные аккумуляторы, обеспечивающие питание двигателей топливом на режимах полёта с околонулевыми и отрицательными вертикальными перегрузками, перекрывные краны, датчики расходомёров, топливомасляные теплообменники и фильтры.
Топливные фильтры снабжаются перепускными клапанами, через которые обеспечивается питание двигателя топливом в случаях засорения или обледенения фильтра.
Наличие линии кольцевания с кранами кольцевания обеспечивает подачу топлива в любой двигатель при отказах в подкачивающей магистрали любого расходного бака, а также служит для выравнивания количества топлива в симметричных баках.
Топливный аккумулятор (см. рис. 8.2.) представляет собой цилиндрический или сферический сосуд, разделённый прорезиненной мембраной на две полости - воздушную и топливную. Воздушная полость находится под давлением сжатого воздуха. Топливная полость соединена с трубопроводом, идущим от подкачивающего насоса к двигателю, и при работающем подкачивающем насосе заполнена топливом, так как давление воздуха в воздушной полости меньше минимально возможного давления топлива. При этом мембрана прижата к стенкам сосуда и весь его объём заполнен топливом. При отливе топлива от насоса давление в трубопроводе за ним падает, сжатый воздух давит на мембрану и она вытесняет топливо из топливной полости в магистраль подкачки (проходу топлива в насос препятствует установленный в магистрали обратный клапан). Вместимость топливного аккумулятора определяется расчётным временем действия перегрузок, приводящих к отливу топлива от насоса.
Подача топлива в двигатели контролируется сигнализаторами давления, датчики которых устанавливаются за каждым баковым насосом подкачки и на входе в насос высокого давления двигателя, а также сигнализаторами перепада давления, характеризующими состояние фильтров. Сигнализация осуществляется обычно на мнемосхеме топливной системы в кабине экипажа.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

  • I . Общие сведения о топливных системах ЛА ГА и предъявляемые к ней требования
  • II . Оценка технического состояния топливной системы ВС
  • III . Технология ТО топливной системы
  • 3.1 Осмотр и дефектация
  • VIII . Расчёт магистрали слива топлива в полёте самотёком

I. Общие сведения о топливных системах ЛА ГА и предъявляемые к ней требования

Топливная система самолета предназначена для размещения и хранения необходимого для выполнения полета запаса топлива и подачи его в работающие двигатели в необходимом количестве и под требуемым давлением на всех режимах полета .

Основные требования, предъявляемые к топливной системе:

Топливная система должна обеспечивать бесперебойное питание двигателей топливом на всех режимах полета.

В случае выключения подкачивающего насоса топливная система должна обеспечивать питание двигателей от МГ до взлетного режима на высотах до 2000 м с сохранением центровки и кренящих моментов в допустимых пределах.

Ёмкость топливных баков должна быть достаточной для выполнения полета на заданную дальность и должна включать аварийный (аэронавигационный) запас на 45 мин. полёта на крейсерском режиме (по нормам FAR и JAR).

Выработка топлива не должна существенно влиять на центровку ВС.

Топливная система должна быть безопасной в пожарном отношении.

Топливная система должна обеспечивать централизованную заправку, а также должна иметь приспособления для заправки под давлением.

Должна предусматриваться возможность аварийного слива топлива в полёте в случае, если максимальная масса ВС превышает допустимую из условий посадки.

Топливная система должна иметь возможность надежного и непрерывного контроля за очередностью и количеством выработки топлива, как в отдельном баке, так и в группе баков.

Топливная система условно делится на две системы:

внутреннюю, или систему питания двигателей;

внешнюю, или самолетную.

К внутренней системе относятся топливные агрегаты и соединяющие их трубопроводы, установленные на двигателе и поставляемые вместе с двигателем Д-ЗОКУ-154.

Самолетная топливная система состоит из топливных баков и следующих функциональных систем:

питания топливом основных двигателей;

питания топливом двигателя вспомогательной силовой установки;

перекачки топлива;

дренажа топливных баков;

заправки топливом;

системы автоматики расхода и измерения топлива СУИТ4-1Т;

системы измерения расхода топлива СИРТ-1Т.

Топливо на самолете Ту-154 размещено в пяти кессон-баках. Три бака - один бак №1 и два бака № 2 - расположены в центроплане и два бака (баки № 3) - в отъемных частях крыла. Пространство в центроплане между бортовыми нервюрами № 3 и первым и вторым лонжеронами используется в качестве бака №4.

Питание двигателей осуществляется из расходного бака № 1, который пополняется топливом из баков № 2 и 3, а также из бака № 4.

Централизованная заправка баков топливом производится снизу, через две приёмные горловины, установленные в носке центроплана правого крыла. При отказе централизованной заправки под давлением, заправка всех баков (кроме расходного) может производиться через верхние заправочные горловины баков.

Ёмкость топливной системы Ту-154:

Бак № 1 (расходный) 3300кг

Бак № 2 (левый, правый) 9500кг

Бак № 3 (левый, правый) 5425кг

Бак № 4 (фюзеляжный) 6600кг

Общее количество топлива39750кг (при 0,8г/см 3)

Каждый топливный бак представляет собой герметический отсек, образованный лонжеронами, нервюрами и верхней и нижней панелями крыла.

II. Оценка технического состояния топливной системы ВС

Оценка технического состояния топливной системы подразумевает, прежде всего, получение информации о возможных отказах и неисправностях, возможных в данной системе. Основными отказами и неисправностями топливной системы являются:

Отказы подкачивающих насосов из-за разрушения подшипников.

Отказы электромеханизмов запорных заслонок и кранов из-за отказов электродвигателей постоянного тока.

Утечки, вызванные износом уплотнительных колец и втулок, а также внешней негерметичностью соединений.

Падение и колебание давления топлива в результате разрегулирования и выхода из строя топливных насосов, редукционных клапанов и т.д.

Замерзание топлива в трубопроводах вследствие обводнения топлива, а также отказов системы радиаторов, насосов.

Длительное время для контроля технического состояния агрегатов топливной системы используется прибор "Тест", который контролирует состояние топливной системы, используя комплекс параметров:

Время открытия и закрытия заслонки (крана).

Потребляемый электродвигателем ток.

Уровень коммутационного шума (искрения), характеризующий техническое со стояние щеточно-коллекторного устройства электродвигателя.

Для диагностирования подшипников подкачивающих насосов топливной системы используется среднеквадратическое значение уровня виброускорения в характерных диапазонах частот.

Основное внимание при ТО топливных систем следуем уделять их герметичности. В первую очередь проверяются места стыков трубопроводов и агрегатов. Также необходимо проверять заборники системы дренажа.

Отказы и повреждения элементов топливных систем обусловлены:

конструктивно-производственными недостатками;

проявлением неблагоприятных свойств топлива, которые могут оказывать повре ждающее действие и на элементы конструкции двигателя;

нарушениями технологичности технического обслуживания и правил эксплуата ции систем питания двигателей топливом на земле и в полёте;

ошибками, допущенными при ремонте ЛА.

К характерным повреждениям систем относятся следующие:

1)Течь топлива из баков-кессонов и сливных клапанов .

Негерметичность баков и клапанов слива отстоя обнаруживается по следам течи топлива на нижних панелях крыла, нишах шасси или под центропланом. Основная причина течи баков - ослабление заклёпочных соединений панелей баков-кессонов, недоброкачественная их герметизация, а сливных клапанов - разрушение уплотнительных колец.

2 ) Отказы подкачивающих и перекачивающих насосов .

Они связаны с разрушением подшипника электродвигателей (сопровождается шумом при их работе, вибрацией), износом манжет уплотнения насоса и, как следствие, сопровождаются течью топлива из дренажных штуцеров насосов, износом щёток и разрушением коллекторного узла электродвигателя.

3 ) Нарушение работы кранов (пожарных, кольцевания и др .).

Оно происходит по причинам износа и разрушения уплотнений, элементов привода заслонок, отказа электромеханизмов.

4 ) Разрушение корпусов топливных фильтров .

Вызывается повышенными пульсациями топлива в системе.

5 ) Разрушение мембран, окисление контактов сигнализаторов давления .

6 ) Засорение фильтрующих элементов топливных фильтров кристаллами льда при низких температурах наружного воздуха.

топливная система самолет герметичность

Кристаллы льда засоряют фильтр магистрали низкого давления, что приводит к существенному увеличению гидравлического сопротивления магистрали и ухудшению кавитационных характеристик основного топливного насоса. Замерзание отстоя воды в полости подкачивающего насоса может вызвать примерзание его ротора к корпусу и разрушение валика привода насоса при запуске двигателя.

7 ) Засорение фильтрующих элементов и форсунок микрозагрязнениями при высоких температурах топлива (выше 100.110°С).

При этом из топлива в виде осадка выделяется сернистые соединения, оксиды металлов, смолы и твёрдые углеродные частицы, образующиеся в результате разложения термически нестабильных фракций топлива. Этот осадок вызывает также повышенный износ топливных насосов.

8 ) Попадание воздуха в систему .

Оно приводит к нарушению режимов работы топливных регуляторов, колебания частоты вращения ротора и выключению двигателя, кавитации в трубопроводах и насосах. Поэтому после длительной стоянки ЛА воздух удаляют из топливных магистралей через специальные клапаны.

9 ) Разрушения топливных трубопроводов .

Они происходят в результате их колебаний и составляют значительную часть всех отказов усталостного происхождения в ГТД. Разрушение трубопроводов наблюдаются, как правило, в местах концентрации напряжений: в зонах приварки и припайки ниппелей, по переходу цилиндрического участка трубы в развальцованной конический, под зажимами труб и в местах их максимальной изогнутости. Трещины вдоль образующей трубопровода возникают под действием пульсации давления топлива, а окружные трещины - в результате циклического изгиба вибрациями, передаваемыми от корпуса двигателя. Снижению усталостной прочности трубопроводов способствуют искажения формы их поперечного сечения, монтажные напряжения, поверхностные повреждения (вмятины, забоины, риски и т.п.). Поэтому к качеству монтажа трубопроводов предъявляются высокие требования.

III. Технология ТО топливной системы

3.1 Осмотр и дефектация

Основными работами по обслуживанию топливной системы являются: проверка состояния трубопроводов и агрегатов системы, проверка работы подкачивающих и перекачивающих насосов, порционера, топливного насоса ВСУ; проверка герметичности системы питания основных двигателей и перекрывных (пожарных) кранов; работы по заправке и сливу топлива

В процессе эксплуатации необходимо тщательно следить за герметичностью и надежностью всех соединений трубопроводов. При наличии течи по соединениям заменить в них уплотнительные кольца

При демонтаже соединительных металлических муфт трубопроводов надо слить топливо из трубопровода и расконтрить гайки муфты. Специальным ключом ослабить одну гайку, а другую полностью отвернуть. После этого сдвинуть муфту в сторону ослабленной гайки. Снять уплотнительные кольца. При снятых уплотнительных кольцах отвернутая соединительная муфта должна свободно перемещаться по концам труб.

При монтаже соединительной муфты гайки должны наворачиваться на муфту без скручивания уплотнительных резиновых колец

Детали, имеющие на уплотняемых поверхностях забоины, царапины и задиры установке на самолет не подлежат.

При соединении трубопроводов с помощью муфты необходимо обеспечить соосность трубопроводов на стыках. Допускается их несоосность не более 1 мм. Зазор между концами стыкуемых трубопроводов должен быть 9 ± 3 мм.

Осмотреть магистрали топливной и дренажной систем. На трубопроводах не должно быть вмятин, царапин, потертостей. Не допускается контакт между трубопроводами и элементами каркаса самолета.

Убедиться в отсутствии подтеков топлива в местах прокладки трубопроводов и крепления их к агрегатам.

Проверить целостность перемычек металлизации и их крепления

Для крепления трубопроводов, находящихся внутри кессон-баков, для избежания коррозии применять хомуты только с оцинкованной стальной лентой.

При осмотре агрегатов топливной системы необходимо убедиться в отсутствии течи, подтеков, трещин забоин, повреждения лакокрасочного покрытия, ослабления болтов крепления и нарушения центровки.

При осмотре поплавкового устройства порционера обратить особое внимание на состояние поплавков и их рычагов

При проведении работ необходимо следить, чтобы в кессон-баки, трубопроводы и агрегаты не попали посторонние предметы, вода, снег, грязь.

Для демонтажа насосов ЭЦН-323 и ЭЦН-325 необходимо сливать топливо из баков. Демонтаж насоса ЭЦН-319 проводить без слива топлива из бака. Запрещается поднанимать насосы за электропровода.

При монтаже насоса не допускается повреждение защитного кожуха электродвигателя

Перед монтажом агрегатов надо проверять целостность уплотнений, следить, чтобы на резиновых кольцах не было закусываний, подрезов, вмятин, деформаций, сеток старения. Резиновые уплотнительные кольца разрешается смазывать маслом МК-8.

После монтажа насосов проверить их работоспособность включением вручную в пилотской кабине и прослушиванием их.

После ремонта и демонтажа трубопроводов и агрегатов топливной системы необходимо перед первым запуском двигателя произвести промывку трубопроводов подачи топлива к двигателям, посредством включения топливных подкачивающих насосов.

В любое время года необходимо следить за чистотой заборников воздуха системы дренажа топливных баков.

Сливной трубопровод заправочной горловины не должен быть засорён, так как конденсат, находящийся в нем, может замерзнуть, разорвать его, и через этот разрыв топливо будет вытекать из бака.

Проверка работы подкачивающих насосов и герметичности системы питания основных двигателей производится поочередным включением насосов расходного бака.

Загорание сигнальных ламп свидетельствует об исправности насосов и системы сигнализации.

Эту работу, а также работы по проверке функционирования других топливных насосов, электромагнитных кранов и систем, требующих электропитания, осуществлять при включении АЗС систем. Для проверки герметичности системы питания основных двигателей открыть перекрывные краны и после 5 минут (не менее) работы подкачивающих насосов осмотреть топливные магистрали и убедиться в их герметичности. При наличии течи по соединениям трубопроводов между собой и агрегатами заменить уплотнительные резиновые кольца.

При проверке функционирования перекачивающих насосов выключатель переключения управления перекачивающими насосами установить в положение "Ручное". При поочередном включении перекачивающих насосов должны загораться соответствующие им сигнальные лампы, что свидетельствует об исправности насосов и системы сигнализации.

Работоспособность порционера проверяется при включенных топливомере и автомате расхода топлива при автоматическом управлении перекачивающими насосами (переключатель "Автомат - Ручное" должен стоять в положении "Авт. "). По зеленым сигнальным лампам перекачивающих насосов баков № 2 и 3 следить за работой насосов. Погасание этих ламп свидетельствует о том, что порционер неисправен.

Для проверки работоспособности топливного насоса ВСУ и герметичности перекрывных кранов 768600МА магистралей питания основных двигателей, выключатель запуска ВСУ установить во включенное положение, выключатель "Запуск - холодная прокрутка " установить в положение "Запуск".

Загорание табло "Р топлива" на панели запуска ВСУ свидетельствует об исправности насоса. Если после 5 минут работы насоса сигнальные табло "Р топлива" основных двигателей на панели приборов контроля двигателей не погаснут, то перекрывные краны герметичны.

Рукоятки на щитке заправки в открытом или закрытом положении кранов заправки должны быть в одной плоскости; допускается их отклонение от плоскости ±2 мм.

Заправка самолета топливом осуществляется в соответствии с заданием на полет с помощью системы заправки под давлением.

Основным топливом для двигателей самолета и двигателя ВСУ является керосин марок Т-1, ТС-1, Т-7 (ТС-1 Г), Т-7П и смеси указанных марок

Во время заправки самолета топливом необходимо соблюдать меры по обеспечению техники безопасности. До начала работ убедиться, что самолет и топливозаправщик заземлены, установлены упорные колодки под передние и задние колеса главных стоек шасси, а на шп. 67 установлена страховочная штанга, сняты заглушки с заборников системы дренажа. На стоянке должны быть противопожарные средства. Курить и зажигать спички возле самолета запрещается. Запрещаются работы по обслуживанию радио - и прочего электроприборного оборудования и замене аккумуляторов. Топливо, слитое из отстойников топливозаправщика не должно иметь воды и механических примесей. В паспорте на топливо должна быть виза ответственного лица, разрешающего заправку.

Количество заправляемого топлива определяется в соответствии с заданием на полет и графиком его расхода и заправки.

При техническом обслуживании топливной системы самолета необходимо с особой тщательностью соблюдать указания по технике безопасности.

Работы по замене агрегатов, трубопроводов и другие работы, связанные с возможностью открытой течи топлива на землю или на конструкцию самолета, выполнять при обесточенной электросети самолета. Не допускается попадание топлива на электропровода и агрегаты электрооборудования самолета-Работы в топливных кессон-баках надо проводить в спецодежде, в маске или противогазе в присутствии связного для наблюдения.

Спецодежда должна быть из хлопчатобумажной ткани с застежками или пуговицами, не дающими искрения. Связной для наблюдения должен видеть работающего в баке и подаваемые им сигналы в течение всей работы, чтобы принять меры в случае сигнала о помощи. При работе внутри бака вынуть из карманов все ненужные инструменты и личные вещи не брать в бак металлические вещи, с острыми краями

Для предотвращения пожара при заправке самолета надо надежно заземлять самолет, заправочные шланги и топливозаправщики. Под колеса топливо-заправщика установить колодки. Необходимо помнить, что источником пожара могут быть разряды статического электричества и искры, появляющиеся в результате ударов металлических предметов друг о друга. Поэтому во избежание появления разрядов статического электричества запрещается пользоваться при промывочных, работах шерстяными и текстильными материалами.

Горловины кессон-баков и других емкостей с горючими материалами открывать руками, не ударяя по ним металлическими предметами, чтобы не допустить появления искры. Не допускается трение и волочение каких-либо металлических предметов (стремянок, ящиков и т.д.) вблизи самолета или под ним при открытых топливных баках. Не допускается хождение в ботинках, подбитых гвоздями и металлическими пластинам, в непосредственной близости от открытых баков.

3.2 Обслуживание топливной системы

Топливные системы предназначены для подачи необходимого количества топлива к двигателям. Они являются комплексом системы: питания двигателя топливом, дренажа топливных баков, автоматического управления расходом топлива и измерения его количества.

Подкачивающие насосы . ПНЛ проверяют по давлению (где имеются манометры), на слух или по загоранию (погасанию) ламп сигнализации, а также контролируют состояние их уплотнений. Наличие течи топлива из дренажных трубок подкачивающих насосов свидетельствует о нарушении сальниковых уплотнений. Проверяется исправная работа различных кранов (пожарных, перекрывных, перекрёстного питания), насосов подкачки и перекачки, сигнализаторов давления и других приборов контроля работы топливных систем.

Обслуживание топливных баков в эксплуатации сводится к периодическому их осмотру. Неисправностями мягких топливных баков являются: течь их вследствие некачественной склейки стенок баков; отрыв или отслоение от внутреннего слоя накладок (лент крепления) рёбер жидкости;

трещины внутреннего слоя в результате естественного старения резины, а также разрушения в местах заделки фланцев у заливных горловин, ПНЛ и межбаковых соединений.

Контроль внутренних поверхностен мягких баков осуществляется через монтажные люки. Баки вначале продувают в течение 20-30 мин. сжатым воздухом с целью уменьшения концентрации паров топлива. Работают внутри баков в специальном комбинезоне, мягкой обуви и противогазе с удлиненным шлангом, который выводят наружу топливного бака. При отрицательных температурах окружающего воздуха вследствие уменьшения эластичности резины монтаж и демонтаж мягких баков производят после их предварительного прогрева тёплым воздухом с температурой не выше 40-50 градусов.

Моменты затяжки болтов указываются в инструкциях. Их величина зависит от конструкции баков и диаметра болтов.

Проверка бака на герметичность производится путём заливки во всю группу баков топлива с выдержкой в течение 10 ч. Если течи нет, болты крепления крышки монтажного люка контрят и пломбируют, снимают ложную панель, устанавливают съёмную панель и опускают самолёт на колёса.

Дублирование ПНЛ выражается в установке двух параллельно работающих насосов, каждый из которых обладает производительностью, достаточной для самостоятельного питания двигателей топливом. При совместной работе каждый ПНЛ обеспечивает примерно половину расхода топлива двигателями, что снижает потребный кавитационный запас давления и повышает высотность.

Резервирование ПНЛ состоит в том, что при входе из строя одного насоса включается в работу другой. Последний для повышения живучести топливной системы может иметь другой тип привода.

3.3 Обслуживание трубопроводов топливной системы

Трубопроводы служат для соединения агрегатов данной магистрали и подачи жидкости. Они подвергаются деформации и вибрациям в результате влияния на них частей самолёта и двигателя.

Магистраль из жёстких трубопроводов должна иметь гибкие участки для снижения вибрационного воздействия.

Жёсткие трубопроводы изготовляют из дюралюминия, алюминиевомарганцевых сплавов, латуни и стали. Последняя применяется при наличии в магистрали высокого давления (подача топлива к форсункам). Для предохранения от коррозии трубопроводы из алюминиевомарганцевых сплавов анодируются, из стали - оцинковываются.

Гибкие трубопроводы (шланги) применяются для соединения жёстких трубопроводов или на участках, где затруднён монтаж.

При монтаже труб избегают возвышений, в которых мог бы скапливаться воздух, а также прогибов, препятствующих выработке и сливу жидкости из магистрали.

Малый радиус изгиба трубы увеличивает гидравлические сопротивления и концентрацию напряжений.

Выполняют изгиб трубы так, чтобы радиус изгиба (до оси трубы) был не менее трёх её наружных диаметров. В местах, где нельзя изогнуть трубопровод, ставят угольники.

Толщина стенки трубопровода не должна быть меньше 1мм для труб из алюминиевых сплавов и 0,5мм - из стали. Расчётные размеры диаметра и толщины стенки трубы уточняют по размерам, указанным ГОСТ 1947-56 на трубы из алюминия и алюминиевых сплавов и ГОСТ 8734-58 на трубы стальные бесшовные холоднотянутые и холоднокатаные.

Отбортовка . Обращается внимание на то, чтобы трубопроводы были закреплены к элементам конструкции планера специальными колодками или хомутами с прокладками из резины, кожи или фетра. Плохое крепление трубопроводов может явиться причиной их разрушения вследствие усталости материала или перетирания о детали планера, места прохода трубопроводов через перегородки должны быть отбортованы, А трубы на этом участке обшиты кожей (дерматином) или защищены от перетирания резиновыми прокладками.

Монтаж без натяга . При замене жёстких трубопроводов следят, чтобы длина и конфигурация их обеспечивала установку и присоединение трубопроводов без натяга. В свободном состоянии между торцами ниппельного соединения должен быть небольшой (0,5 - 1,0мм) зазор. Признаком правильного соединения трубопроводов является совпадение оси ниппеля с осью штуцера, при этом развальцованная часть трубопровода стыкуется с конусной поверхностью штуцера, а накидная гайка трубопровода навёртывается на штуцер от руки не менее чем на 2/3 длины резьбы.

Устранение течи . Запрещается устранять течь жидкости в резьбовом соединении большим затягиванием гаек. Если после потягивания гаек течь не прекращается, то выясняют причину неисправности и устраняют её. При низких температурах окружающего воздуха подтягивание соединений и резиновыми соединениями производят только после подогрева их тёплым воздухом. Трубопроводы не должны иметь резких изгибов и вмятин, могущих послужить причиной несоосности соединения.

Металлизация. Для хорошего электрического контакта соединяемых трубопроводов и предохранение от скопления в них зарядов статического электричества следят за надёжностью контакта металлизации каждого дюритового соединения. Для этого обращают внимание, чтобы на дюритовых трубках под хомутами проходила полоска алюминиевой фольги, концы которой должны быть загнуты под дюритовую трубку для соприкосновения с металлическими трубками, очищенными в этих местах лакокрасочного покрытия или анодной плёнки.

3.4 Испытание топливной системы самолета на герметичность

Общие испытания топливной системы производятся после заправки самолета на аэродроме для проверки герметичности.

После капитального ремонта производятся испытания трубопроводов топливной системы сжатым воздухом с помощью стендов, оборудованных манометрами и моновакуумметрами. Проверка производится по отдельным магистралям. Магистраль дренажа проверяется при отключенных баках под давлением 1140 мм рт. ст. в течение 10 мин. Падение давления в магистрали не должно превышать 3 мм рт. ст. Магистраль питания испытывается при отключенных баках под давлением воздуха 2 кгс/см 2 Если в течение 15 мин. падение давления не будет, производится испытание магистрали совместно с баками под избыточным давлением воздуха 50 мм рт. ст. измеряемого по моновакуумметру. Воздух во время этого испытания подается через дренажный трубопровод баков, при этом остальные дренажные, сливные и разгрузочные трубопроводы должны быть заглушены, а перекрывные краны закрыты.

Способ обмыливания. Для обнаружения мест с течью (негерметичностью) применяется обмыливание мест соединений, доступных осмотру. Мыльная пена приготовляется или из мыльного корня (ОСТ 4303) или из обычного нейтрального мыла с содержанием щелочи не более 0,05% с добавлением желатина как пенообразующего и глицерина для повышения вязкости.

3.5 Контроль жёсткости топливных баков

Характерными неисправностями жёстких баков являются: разрушение перегородок, коррозия внутренней поверхности днища, обечаек и каркаса бака, особенно около головок, заклепок и из-под уплотнительных прокладок арматуры. На клёпаных баках, не имеющих продольных перегородок, часто наблюдаются трещины в нижней части поперечных перегородок, а иногда и разрывы. Они появляются вследствие большой односторонней нагрузки, создаваемой топливом при наклонном положении баков.

Вышеуказанные неисправности приводят к нарушению жёсткости топливных баков, и, соответственно, отражаются на прочности крыла самолёта в целом.

Коррозия внутренних поверхностей нижних обечаек баков происходит под действием влаги, выделяющейся из топлива на дно. Обечайки клёпаных топливных баков всегда имеют волнистую форму. Между швами крепления перегородок образуется впадины, в которых скапливается вода. Эта вода не может быть слита через сливное отверстие бака. Особенно интенсивно распространяется коррозия в том случае, если баки долго хранятся незаправленными.

Проверка бака на герметичность . После осмотра бак проверяют на герметичность. Если бак штампованный и не имеет внутренних перегородок, то перед испытанием на него надо надеть специальное приспособление, предохраняющее бак от раздутия. Испытания производят под давлением 0,2кгс/см 2 .

Меры безопасности при осмотре баков . Осмотр внутренней конструкции бака производят до его пропарки с подсветом взрывобезопасной низковольтной электрической лампой или карманным фонарем с длинным хоботом; лампа фонаря должна быть защищена от повреждений. Взрывобезопасная лампа помещается в герметичном стеклянном колпачке с углекислотой. Если колпачок разобьётся, давление газа снизится и пневматическое выключающее устройство прекратит подачу тока.

3.6 Контроль мягких топливных баков

Неисправности баков. Основными неисправностями мягких баков являются трещины в местах переходов, а утолщениям стенок под арматуру и крышку бака. Эти трещины проявляются в результате неаккуратного снятия баков при низких температурах.

Проверка бака на герметичность производится путём заливки во всю группу баков топлива с выдержкой в течение 10 часов. Если течи нет, болты крепления крышки монтажного люка контрят и пломбируют.

Испытания снятых баков на герметичность производят в специальном контейнере путём заливки топлива под давлением 0,25кгс/см, или ремонтируемое место промазывают мыльной пеной и в баки создают избыточное давление 0,2кгс/см 2 , в течение 5-10 мин. В случае негерметичности, в мыльной пене будут видны выходящие из бака пузырьки воздуха.

3.7 Контроль топливных баков-отсеков крыла

Перед испытанием бака-отсека на герметичность заклёпочные швы бака промазывают меловой водой и высушивают. Проверку на герметичность производят наполнением бака-отсека топливом и выдержкой под давлением 0,1кгс/см" в течение одного часа, а без давления 3 часа. Места течи обнаруживаются по появлению пятен на меловой обмазке.

3.8 Испытание трубопроводов на прочность

Испытание на прочность производят 1-2% -ным раствором хромпика (ГОСТ 2652-48) в чистой воде под давлением, в 1,5 раз превышающим рабочее, в течение 3-5мин. Для трубопроводов из нержавеющей стали может применяться чистая вода без добавки хромпика. Герметичность проверяется обычно сжатым воздухом в аквариуме, помещённом в бронекамере. Сначала в течение 3 мин. внутрь трубопровода подаётся избыточное давление 2-Зкгс/см, затем оно поднимается до значения, близкого к рабочему, и выдерживается также около 3 мин. Применяемый воздух должен быть относительно сухим с точкой росы около - 40°С.

После испытания трубопроводы продувают воздухом и просушивают при температуре около +150 С.

Хромпик калиевый технический (бихромат калия технический) К2Сг207 - калиевая соль двухромовой кислоты-кристаллы оранжево-красного цвета. Выпускают (ГОСТ 2652-67) высшего сорта с содержанием основного вещества 99,6%, 1-го сорта-99,3% и 2-ого-99,0%. "

Отбраковка трубопроводов . Трубопроводы бракуют при наличии следующих дефектов: повреждений развальцовки; скручивания, надрывов, трещин, разницы в толщине стенок свыше 0,1мм и общего утонения стенок более чем на 0,3мм; западания развальцовки в ниппеле; овальности, составляющей более 20% внешнего диаметра; вмятин, рисок (более 0,2мм глубиной) и надиров, превышающих допустимые; повреждений ниппеля, трещин, забоин, деформаций увеличенного зазора между обоймой ниппеля и трубопроводом; повреждений накидной гайки, трещин, деформаций, забоин на резьбе.

На трубопроводах продольные риски более опасны, т.к. внутреннее давление стремится разорвать трубу вдоль образующей, поэтому допустимая глубина продольных рисок 0,1мм. На трубопроводах, не снятых с самолётов, разрешается оставлять без выправления вмятины глубиной 0,5мм.

3.9 Коррозионные поражения трубопроводов

Основными видами коррозионных повреждений трубопроводов являются: коррозионные поражения внутренней поверхности трубопроводов при наличии в рабочей жидкости (газе) коррозионноактивных компонентов и примесей.

Коррозионные поражения наружной поверхности трубопроводов сопровождаются образованием сквозных раковин или раковин различной глубины.

Как правило, очагами возникновения коррозионных раковин служат участки с повреждённым защитным покрытием и места скопления грязи и других коррозионных веществ. Загрязнённые участки служат зонами конденсации влаги, что создаёт благоприятные условия для возникновения химической или электрохимической коррозии материала трубопроводов.

Для предотвращения коррозионного поражения трубопроводов следят за сохранностью их защитных покрытий, а также за тем, чтобы на трубопроводы, особенно в местах их крепления, и под защитную обшивку трубопроводов не попадала влага. Для этого плотно закрывают все крышки люков, тщательно укрывают самолет чехлами, своевременно прочищают дренажные отверстия и т.д.

Защитные покрытия трубопроводов оберегают от повреждения, от попадания на них кислот и щелочей, а поражённые участки покрытия своевременно восстанавливают.

Дефекты трубопроводов, вызванные неправильным обслуживанием:

повреждение лакокрасочного покрытия трубопроводов в процессе их демонтажа и монтажа, а также при монтаже и демонтаже агрегатов и деталей, размещённых вблизи трубопроводов, вследствие неосторожного обращения с инструментом;

резкие перегибы (надламывание) трубопроводов, допущенные в процессе их де монтажа и монтажа; аналогичные перегибы трубопроводов образуются также из-за наличия в них монтажных напряжений;

нанесение на трубопроводы вмятин, царапин и других повреждений вследствие небрежного обращения с инструментом в процессе выполнения монтажно-демонтажных работ;

смятие трубопроводов вследствие неправильного подбора отбортовочных колодок (диаметр выемок колодок меньше диаметра трубопровода);

скручивание трубопроводов в процессе затягивания ниппельного соединения и др.

Большинство из перечисленных дефектов являются следствием небрежного обращения обслуживающего персонала с инструментом в процессе выполнения монтажно-демонтажных работ. Сопутствующим фактором служит эксплуатационное несовершенство технологических систем, затруднённый подход к агрегатам или к соединениям трубопроводов.

Фиксация соединения. Ряд дефектов является следствием неправильного монтажа и демонтажа трубопроводов. В частности, частым дефектом является скручивание трубопроводов, которое возникает в том случае, когда затягивание накидной гайки ниппельного соединения осуществляется без фиксации штуцера агрегата или переходника другим ключом.

Как правило, штуцеры или переходники, поставленные и закреплённые в агрегате в предшествующие монтажу трубопроводов сроки, в процессе работы получают некоторое ослабление затяжки и поэтому имеют возможность проворачиваться вместе с накидной гайкой, ниппелем и трубкой при затягивании ниппельного соединения. Необходимо поэтому во всех случаях при затягивании ниппельного соединения фиксировать штуцер вторым ключом.

Деформация деталей соединения. При неточной подгонке конической части трубопровода к конусу сочленяемого штуцера (перекос) возникает негерметичность соединения, которая не устраняется даже при попытке дополнительного завёртывания накидной гайки. В то же время чрезмерное затягивание накидной гайки обычно ведёт к деформации деталей соединения.

VIII. Расчёт магистрали слива топлива в полёте самотёком

Слив топлива в полёте используют в случае, когда необходимо быстро уменьшить посадочный вес самолёта, либо при необходимости быстрого изменения центровки. Для Ту-154, максимальный посадочный вес которого 78000кг, а взлётный колеблется в районе 100-102т, это означает необходимость слива до 24000кг топлива. Однако слить самотёком можно не всё топливо, а только ту его часть, которая находится в кессон-баках №3 правом и левом (всего 10850кг). Слив топлива осуществляется через два сливных крана по трубопроводам диаметром D=0,036m.

Определяем время слива топлива из баков:

Сорт топлива ТС-1.

а) рассчитываю объём топлива в одном баке №3

V = = 6.497 м 3

б) составлю уравнение определения времени слива элементарного объёма топлива

dt=

где dV - элементарный объём топлива, Q - расход топлива через магистраль слива; в) учитывая, что элементарный объём dV = F Ч dH (площадь зеркала жидкости в баке на толщину слоя), преобразую выражение для определения времени слива

dt= =

г) считая, что средняя высота топливного кессона №3 Н?0,5м, определяем усреднённую площадь зеркала топлива в баке

д) интегрируя выражение (3) по высоте бака, определяю время слива топлива из бака через сливной трубопровод (задаваясь при этом такими величинами, как площадь сливного насадка f = 0010174м2 и коэффициент скорости истечения из насадка ц=0,82)

t =

и, учитывая, что топливо сливается самотёком (и при отсутствии наддува бака), окончательно определяю время слива топлива из баков №3:

Размещено на Allbest.ru

Подобные документы

    Проектирование прибора непрерывного контроля за изменением центровки самолета по мере выработки топлива в баках. Особенности компоновки военно-транспортного самолета Ил-76, влияние расхода топлива на его центровку. Выбор прибора, определяющего центр масс.

    дипломная работа , добавлен 02.06.2015

    Назначение и условия работы форсунки Д50 топливной системы тепловоза. Основные ее неисправности, причины их возникновения и способы предупреждения; осмотр и контроль технического состояния. Технология ремонта деталей и необходимое для этого оборудование.

    курсовая работа , добавлен 14.01.2011

    Техническое описание самолета. Система управления самолетом. Противопожарная и топливная система. Система кондиционирования воздуха. Обоснование проектных параметров. Аэродинамическая компоновка самолета. Расчет геометрических характеристики крыла.

    курсовая работа , добавлен 26.05.2012

    Показатели технического состояния топливной аппаратуры. Влияние качества очистки топлива на работу техники. Факторы, влияющие на производительность насосных элементов и неравномерность подачи топлива. Главные особенности проверки и регулировки форсунок.

    реферат , добавлен 16.12.2013

    Геометрические и аэродинамические характеристики самолета. Летные характеристики самолета на различных этапах полета. Особенности устойчивости и управляемости самолета. Прочность самолета. Особенности полета в неспокойном воздухе и в условиях обледенения.

    книга , добавлен 25.02.2010

    Классификация и задачи предприятий автомобильного транспорта. Особенности технического обслуживания и ремонта топливной аппаратуры. Техническая характеристика автомобиля. Ремонт деталей и узлов топливной аппаратуры. Сборка и регулировка агрегатов.

    курсовая работа , добавлен 28.06.2004

    Конструктивные и аэродинамические особенности самолета. Аэродинамические силы профиля крыла самолета Ту-154. Влияние полетной массы на летные характеристики. Порядок выполнения взлета и снижения самолета. Определение моментов от газодинамических рулей.

    курсовая работа , добавлен 01.12.2013

    Расчёт и построение поляр дозвукового пассажирского самолета. Определение минимального и макимального коэффициентов лобового сопротивления крыла и фюзеляжа. Сводка вредных сопротивлений самолета. Построение поляр и кривой коэффициента подъемной силы.

    курсовая работа , добавлен 01.03.2015

    Требования к военно-транспортному стратегическому самолету с грузоподъемностью 120 т и дальностью полета 6500 км. Выбор схемы самолета и сочетания основных параметров самолета и его систем. Расчет геометрических, весовых и энергетических характеристик.

    курсовая работа , добавлен 28.06.2011

    Аэродинамическая компоновка самолета. Фюзеляж, крыло кессонного типа, оперение, кабина экипажа, система управления, шасси, гидравлическая система, силовая установка, топливная система, кислородное оборудование, система кондиционирования воздуха.