Технология изготовления воздуховодов описание чертежи. Воздуховоды. Технологии производства воздуховодов прямоугольного сечения

Изготовление собственными силами даже небольших партий воздуховодов, необходимых для оборудования систем вентиляции на объектах различного назначения, как правило, выгодно не только с экономической точки зрения. А если компания оказывает услуги по предоставлению оборудования для вентиляционных систем и выполняет их монтаж, наличие собственных производственных участков дает возможность снизить цены и получить преимущество на рынке.

Сегодня производство воздуховодов может выполняться по нескольким технологиям и быть организовано по-разному территориально. Что касается организации производства, то оно может быть:

  • Организовано на стационарной производственной базе;
  • Иметь выездной характер и развертываться непосредственно на объекте, где производится монтаж системы вентиляции;
  • Использовать комбинированные подходы к организации производства.

И тот, и другой метод организации производства имеет свои преимущества, что в конечном итоге позволяет снизить себестоимость готовой продукции и транспортные расходы. Например, при работе над крупными объектами часто гораздо выгоднее доставить станки и оборудование на объект, чем нести значительные транспортные расходы на перевозку воздуховодов, изготовленных на основном производстве.

Технологии производства воздуховодов прямоугольного сечения

Воздуховоды прямоугольного и квадратного сечения часто используются для обустройства систем вентиляции и могут изготавливаться как с применением сварки или пайки, так и с использованием механического замка. Сама технология производства воздуховодов прямоугольного сечения достаточно проста и состоит из нескольких этапов:

  • Вначале выполняют раскрой листа металла по развертке готового изделия;
  • Затем готовая заготовка гнется на листогибочном станке до придания требуемой формы;
  • Производится заделка стыков либо по технологии фальцевого замка, сварки или пайки.

Стоит отметить, что механический замок более быстр в изготовлении и технология изготовления такого стыка менее трудоемка, его использование приводит к несколько большему расходу металла. К том же стыки воздуховода получаются негерметичными и могут ухудшить показатели работы вентиляционной системы со значительной протяженностью. Впрочем, при малой толщине металлического листа, а значит и невысокой стоимости воздуховода, такой замок может считаться оптимальным для изготовления воздуховодов для вентиляционных рукавов небольшой и средней протяженности.

При малой толщине листа, из которого изготавливают воздуховод, для достижения полной герметичности конструкции может использоваться пайка. Если же толщина металла составляет от 1.5 и более мм, может применяться сварное соединение шва.

Воздуховоды круглого сечения могут изготавливаться двумя методами:

  • Путем гибки на вальцовочных станках с последующей сваркой шва или использования фальцевого замка;
  • По технологии навивки на навивном станке из металлической ленты.

Технология вальцовки имеет практически те же особенности, что и изготовление прямоугольных воздуховодов. Что касается навивных воздуховодов, процесс их изготовления более простой, не требует последующей заделки швов. К тому же, навивные воздуховоды могут быть изготовлены нестандартной длины, что позволяет оптимизировать затраты при изготовлении вентиляционных систем нестандартного типа.

Применяемые при изготовлении воздуховодов материалы, основные технологические процессы и типы станков, необходимых для осуществления данного производственного цикла.

1. Зависимость толщины стенок воздуховода от площади его сечения.

2. Основные типы станков, необходимых для изготовления стальных оцинкованных воздуховодов.
· Гильотина.
· Гибочный станок.
· Фальцепрокатный станок.
· Фальцеосадочный станок.
· Станок ребра жесткости.
· Пуклевочный станок.
· ЗИГ-машина.
· Аппарат для производства работ по точечной сварке.
· Спирально-навивной станок.
· Станок для изготовления отводов круглого сечения Гарилокер (GORELOCKER).
· Вальцепрокатный станок.

1. Материалы, применяемые для изготовления оцинкованных стальных воздуховодов.

Воздуховоды из оцинкованной стали изготавливаются преимущественно из листа толщиной 0,5 - 1,2 мм, в зависимости от их типоразмеров, например:
воздуховод прямоугольного сечения, начиная от 100х100 мм, и до 500х200 мм изготавливается из оцинкованного стального листа толщиной 0,5 мм;
воздуховод прямоугольного сечения, начиная от 500х300 мм, и до 800х200 мм изготавливается из оцинкованного стального листа толщиной 0,7 мм;
воздуховод прямоугольного сечения, начиная от 800х300 мм, и до 1000х1500 мм изготавливается из оцинкованного стального листа толщиной 1,2 мм.

Марка применяемой стали СТ-3, CТ-6.

2.Основные типы станков, необходимых для изготовления стальных оцинкованных воздуховодов:

Каждый станок предназначен для выполнения одной уникальной или нескольких родственных технологических операций по обработке стального оцинкованного листа, постепенно превращая его в заготовку-полуфабрикат, набор фасонных изделий и, в конце концов, готовую к эксплуатации воздушную магистраль, состоящую из системы воздуховодов и вентиляционного оборудования.

Гильотина.

Станок предназначен для отрезания стального листа по всей ширине рулона и ни для чего другого более. Конструктивно представляет собой верстак, на котором смонтирован нож с противовесом или электроприводом.

Гибочный станок.

Станок предназначается для изгибания стального листа на необходимый угол (от 00 до 3600). Конструктивно представляет собой станину с двумя направляющими подвижной и неподвижной. Подвижная направляющая осуществляет изгибание листа. Привод может быть ручным или электрическим.

Фальцепрокатный станок.

Предназначается для производства нескольких типов замков, соединяющих между собой края стального листа, и, соответственно, для соединения между собой разных секций прямошовных воздуховодов: одинарный замок, двойной замок. Конструктивно представляет собой станину с прокатным механизмом и электродвигателем.

Фальцеосадочный станок.

Данное устройство предназначается для поджимания (осадки) угла в месте соединения крайних кромок двух стальных листов, то есть для закрытия замка и получения герметичного соединения двух соседних секций прямошовного воздуховода между собой.

Станок ребра жесткости.

Предназначается для изготовления ребер жесткости, служащих уменьшению вибрации стенок воздуховода при прохождении воздуха и, соответственно, снижению шума. Воздуховоды, стенки которых снабжены ребрами жесткости, не гремят при эксплуатации и лучше “держат форму”.

Пуклевочный станок.

Служит для обработки мест соединения воздуховода с фланцем и придания им необходимой жесткости, прочности и герметичности. Фактически станок продавливает листы фланца и воздуховода, обеспечивая прочность и неподвижность их соединения между собой.

ЗИГ-машина.

Предназначается для изготовления на кромках листов правильных углов в местах присоединения к секциям воздуховодов следующих фасонных изделий, изготовленных из оцинкованного стального листа: отводов, полу-отводов, редукций и врезок. Фактически машина производит отбортовку и поджим кромок деталей, раскроенных ранее из оцинкованного стального листа на станках других типов, GORELOCKER, например.

Аппарат для производства работ по точечной сварке.

Осуществляет сварочные операции по соединению между собой листов стали методом точечной сварки. Применяется для изготовления переходов сечения стальных оцинкованных воздуховодов, смесительных и распределительных камер центральных и канальных кондиционеров, секций шумоглушителей и адаптеров.

Спирально-навивной станок.

Применяется при производстве воздуховодов исключительно круглого сечения. Толщина стального листа, применяемого для изготовления спирально-навивных воздуховодов, самым непосредственным образом зависит от площади поперечного сечения воздуховода - чем больше площадь, тем толще лист.

Воздуховод круглого сечения, начиная от диаметра 100 мм, и до диаметра 500 мм изготавливается из оцинкованного стального листа толщиной 0,5 мм;
воздуховод круглого сечения, начиная от диаметра 500 мм, и до диаметра 900 мм изготавливается из оцинкованного стального листа толщиной 0,7 мм;
воздуховод круглого сечения, начиная от диаметра 900 мм, и до диаметра 1250 мм изготавливается из оцинкованного стального листа толщиной 1 мм.

Максимально допустимая площадь поперечного сечения воздуховода, которую способен переварить данный станок - 1,13 м2, при диаметре 1250 мм.

Гарилокер (GORЕLOCKER).

Станок данного типа предназначен для раскроя оцинкованного стального листа на сегменты, и дальнейшего изготовления отводов и полу-отводов диаметром от 100 мм до 1250 мм включительно.

Вальцепрокатный станок.

Данное устройство предназначено для производства круглых прямошовных воздуховодов. Позволяет изготавливать фасонные изделия и врезки длиной от 50 мм. до 1250 мм. включительно: адаптеры и переходы сечения (с прямоугольного на круглое, и наоборот). Возможно изготовление и прямого участка воздуховода, однако, длина его будет ограничена 1250 мм.

Перечисленный выше станочный парк применяется при производстве стальных оцинкованных воздуховодов и фасонных изделий следующих типов:
- Прямошовных стальных оцинкованных воздуховодов квадратного сечения длиной от 10 см. до 2,5 м. включительно;
- Прямошовных стальных оцинкованных воздуховодов круглого сечения длиной от 5 см. до 1,25 м. включительно;
- Спирально-навивных стальных оцинкованных воздуховодов длиной от 50 см. до 5 м. включительно.
- Переходов сечения (предназначаются для соединения воздуховодов различного диаметра и формы сечения).
- Отводов (Предназначаются для поворота воздуховода на 900, могут быть как круглого, так и квадратного сечения).
- Полу-отводов (Предназначаются для поворота воздуховода на 450, могут быть как круглого, так и квадратного сечения).
- Тройников (Предназначаются для разделения магистрали воздуховода на две части одинакового сечения, в нестандартном исполнении возможно разделение на равные части c переходом на большее сечение, например {100х100/100х100}/200х100).
- Адаптеров (Предназначаются для присоединения решеток как потолочного, так и настенного типов. Нестандартная деталь, требующая разработки индивидуального чертежа. Конструктивно адаптер представляет собой стальную коробку с врезкой сверху или сбоку).

Редукция (Фасонная деталь, предназначенная для перехода с магистральной трубы на воздуховод меньшего диаметра. Применяются редукции как прямоугольного, так и круглого сечения. Конструктивно подразделяются на прямые врезки и седловые врезки. Длина врезки не может быть более 20 см).

Напоминаем: У нас вы можете купить оптом комплектующие и запчасти к системам промышленной вентиляции: крепление воздуховодов, кондиционеров, прямоугольные и круглые воздуховоды, траверсу, шину монтажную, уголки оцинкованные, скобу для соединения фланцев, ленту монтажную, перфорированную, ленточный хомут, алюминевый скотч, кронштейны, решетки и анемостаты, листовую и рулонную изоляцию, листы оцинкованный металлические. А также нами производится оптовая продажа элементов крепежа: шпилька резьбовая, саморезы, шурупы, болты, винты, гайки, шайбы, заклепки, забивные анкера. Поставки идут по всей России, со склада в Москве.

В современном строительстве - хоть многоэтажном, хоть коттеджном, хоть коммерческом, хоть жилом - широко применяются системы пассивной и активной вентиляции, воздушного отопления и очистки воздуха.

Если раньше для этих целей специально оставлялись пустоты в перекрытиях и стенах, то сегодня вентиляционные коммуникации прокладывают при помощи вентиляционных коробов (их также называют воздуховодами, вентиляционными трубами). Это специальные трубовидные полые конструкции, позволяющие распределять приточный и удалять загрязненный воздух.

Виды воздуховодов

Производство вентиляционных коробов может стать довольно прибыльным бизнесом, однако сначала нужно определиться с тем, какие конкретно виды конструкций вы хотите изготавливать. Классифицировать воздуховоды можно по разным признакам. Так, в зависимости от формы выделяют круглые и прямоугольные вентиляционные коробы, исходя из применяемого материала, конструкции могут быть пластиковыми, стальными (из оцинкованной или нержавеющей стали), алюминиевыми, из полиэстера, термопластика, силикона, стекловолокна и так далее.

По наличию особых свойств воздуховоды делят на огнезащитные, нержавеющие и другие, по способу соединения – на те, что имеют специальные крепления и те, что соединяются при помощи ниппелей. Основных же типов вентиляционных коробов существует два: гибкие (их еще именуют каркасными) и жесткие.

Выбираем, какие воздуховоды производить

Изготовление вентиляционных труб прямоугольной или круглой формы из алюминия или стали – самый простой вариант. Такие конструкции быстрее и легче монтируются, нежели пластиковые, а также имеют более низкую себестоимость, они не ржавеют, являются огнезащитными, обладают низким аэродинамическим сопротивлением.

Монтаж вентиляции с такими воздуховодами можно осуществлять на предприятиях, в офисах, спортивных, образовательных, культурно-развлекательных учреждениях, организациях общественного питания и вообще в любых зданиях, где есть помещения большой площади, в процессе эксплуатации которых предполагается активный воздухообмен.

Изготовление гибких вентиляционных коробов – более сложный процесс. Их можно применять лишь в специфических условиях, к примеру, в помещениях со сложной конфигурацией или таких зданиях, где монтаж вентиляции с применением крупных оцинкованных вентиляционных труб не представляется возможным. Также такие конструкции используются в помещениях, где нельзя предусмотреть системы активной вентиляции, например, вытяжки для отвода горячего воздуха и паров кислот.

Затрат на изготовление вентиляционных труб из жестких материалов потребуется меньше, но начинать производство именно с них необходимо не поэтому, а потому, что такие воздуховоды вы сможете быстрее реализовать.

Процесс производства

Конструкции любого вида изготавливаются на специальных автоматических аппаратах. По сути, процесс производства представляет собой обычные профилегибочные операции. Мы не будем в подробностях рассказывать о том, как изготовить вентиляционный короб. Ведь это делается не вручную, а при помощи технических устройств. Поэтому самая главная задача для вас, если вы хотите создать успешно функционирующее предприятие, - выбрать хорошее оборудование для производства вентиляции.

Учитываем важные параметры

При выборе основных средств руководствуйтесь главными параметрами воздуховодов: жесткостью, площадью и формой сечения (исходя из степени востребованности на рынке). Про жесткость мы уже говорили, так что с этим все понятно. Гибкие вентиляционные коробы можно реализовать дороже, нежели жесткие, но они и менее востребованы.

Что касается площади и формы сечения, то здесь дело с выбором обстоит сложнее. От того, какие конкретно конструкции вы будете применять, будут зависеть разные показатели, к примеру, скорость потока воздуха, а следовательно, и уровень шума, издаваемого этим потоком в случае превышения нормативов скорости.

Другие факторы выбора

Производство вентиляционных коробов круглой формы менее трудоемко, поскольку они крепятся при помощи ниппелей-защелок. Также такие воздуховоды быстрее и легче монтируются, потому как у них нет выступающих частей. Они отличаются прочностью и за счет своей более естественной формы создают не такое большое аэродинамическое сопротивление.

В то же время прямоугольные вентиляционные трубы демонстрируют в помещении наилучшие показатели воздушного потока в том случае, когда требуется значительная площадь поперечного сечения или когда монтаж производится в условиях повышенной сложности, к примеру, над подвесными потолками.

Изготовление вентиляционных воздуховодов круглого и прямоугольного сечения осуществляется из одних и тех же материалов: либо алюминия толщиной от полмиллиметра до миллиметра, либо оцинкованной стали. Согласно статистическим данным, объем продаж у них тоже практически равный, они пользуются одинаковым спросом.

И все же, если вы хотите сделать свой бизнес более успешным, приобретите оборудование для производства вентиляции, включающее линии для изготовления труб как круглого, так и прямоугольного сечения. Какие же машины вам потребуются?

Оснащаем цех по производству воздуховодов

Итак, технологическая линия для изготовления вентиляционных коробов любого сечения должна включать:

  • подающее устройство;
  • автомат для разматывания металлического рулонного листа;
  • аппарат для правки листа (технология допускает отклонение диагонали как заготовочного листа, так и самого воздуховода на 0,8 миллиметра – если вентиляционная труба будет иметь сильное нарушение геометрии, то от воздушного потока будет издаваться сильный шум, поэтому современная техника в обязательном порядке включает устройство правки);
  • промышленная система числового программного управления;
  • гильотина, которая отрезает готовый воздуховод.

Линия, применяемая для изготовления прямоугольных и круглых вентиляционных труб, различается только тем, что в первом случае формообразующими узлами выступают угловысечные приспособления, система нанесения жесткости ребер, автоматический листосгиб, оснащенный поворотной балкой, а во втором – прокатные ролики.

Стоимость технологической линии

Производство вентиляционных коробов – дело достаточно затратное. Линия для изготовления воздуховодов круглого сечения (при условии, что производитель отечественный) обойдется примерно в полтора миллиона рублей.

Стоимость линии для производства вентиляционных труб прямоугольного сечения будет составлять от 1,8 миллиона рублей и выше. То есть чтобы приобрести обе линии, вам нужно иметь в наличии ни много ни мало, а 3,3 миллиона рублей по самым минимальным меркам.

Срок окупаемости

Но есть и хорошая новость. Рентабельность в такой сфере бизнеса довольно высока. И если вы будете отпускать погонный метр по цене в 120-3000 рублей (в зависимости от диаметра труб), то даже при условии работы в одну смену пять дней в неделю сможете окупить затраты уже за полгода.

Перспективы развития

Производство вентиляционных коробов – бизнес перспективный. Наладив технологический процесс, можете расширить дело и заняться также изготовлением соединительной и крепежной фурнитуры для труб: заглушек, ниппелей, «зонтов», врезок, монтажной перфоленты и прочего. Такие изделия можно производить из некондиционного товара, обрезков и иных отходов.

Кроме того, старайтесь обогащать ассортимент продукции: начните изготовление жестких пластиковых, полиэстерных, силиконовых, гибких поливинилхлоридных, резиновых и других воздуховодов. Это позволит вам как минимум занять региональный рыночный сегмент в сфере вентиляционных систем.

Проработав стабильно в течение хотя бы полугода и подготовив основательно технологическую базу, можете заняться, кроме прочего, организацией услуг по проектированию и монтажу систем вентиляции. Для этого вам потребуется нанять инженеров, специализирующихся на работе по теплогазоснабжению.

Это востребованные специалисты в настоящее время, поэтому приготовьтесь, что их труд будет стоить совсем не дешево. Также в числе сотрудников вам будут нужны монтажники, но их работа ценится не так высоко, считается, что это низкоквалифицированные рабочие, а порой они могут вообще не иметь квалификации. Набрав персонал, можно предлагать услуги по установке систем вентиляции.

Производство воздуховодов

Короба для систем вентиляции и кондиционирования используются при устройстве любых канальных систем. Материал для их изготовления выбирается в зависимости от фактических условий эксплуатации, параметров рабочей среды, а также от назначения. Для изготовления воздуховодов используют низкоуглеродистые стали, «оцинковку» или «нержавейку», а также различные виды пластика.

Воздуховоды для вентиляции из «оцинковки» эксплуатируются в воздухообменных системах с рабочей средой температурой до +80С (возможно непродолжительное повышение до +200С) и влажностью до 60%. Воздуховоды из оцинкованной стали могут применяться в районах с любым климатом по ГОСТ 15150 при условии не агрессивных рабочих сред (воздушных и газовоздушных). Оцинкованные воздуховоды обходятся без дополнительного защитного покрытия, поскольку верхний цинковый слой защищает металл от коррозии даже в местах его повреждения (за счет гальванической пары «сталь-цинк», образующей оксидную пленку под воздействием атмосферного кислорода).

Воздуховоды из нержавеющей стали предназначены для работы с перегретым воздухом и агрессивными газовоздушными смесями. Температура рабочей среды - до +500С (допускается кратковременное повышение до +700С). В качестве заготовительного материла для производства воздуховодов из «нержавейки» применяют стали по ГОСТ 5632-72 (жаро- и коррозионностойкие).

«Черные» воздуховоды производят из низкоуглеродистой стали. Толщина заготовки - от 1,2 до 15 мм. «Черные» воздуховоды для вентиляции хорошо переносят высокие температуры и воздействие открытого пламени (они слабо подвержены деформациям - воздуховоды системы вентиляции не разгерметизируется, и огонь не перекинется в соседние помещения).

Для аспирационных систем и дымоудаления «черные» вентканалы - самый правильный выбор. Системы вентиляции из простой углеродистой стали в основном востребованы на производственных площадях, где возможно чрезмерное выделение газов, пыли и пр.

Воздуховоды могут иметь круглую или прямоугольную форму в поперечном сечении. Производство прямоугольных воздуховодов - классика систем вентиляции, но благодаря прогрессивным технологиям, рынок все больше уступает позиции круглым воздуховодам, поскольку они более технологичны в изготовлении, имеют лучшие аэродинамические характеристики и удобны в монтаже. На сегодняшний день производство круглых воздуховодов «набирает обороты», становясь все более популярным.

Для монтажа воздуховодов в единую магистраль используют различные фасонные комплектующие, которые условно подразделяют на типовые (уголки, повороты, разветвители, «утки», переходы и пр.) и нетиповые (адаптеры для вентрешеток или редукторы для воздухообменных систем).

Воздуховоды из полимеров (пластика) в отдельных случаях могут стать отличной альтернативой металлическим аналогам. Среди преимуществ воздуховодов из пластика необходимо выделить малый удельный вес, легкость монтажа (нет необходимости в специальном инструменте и приспособлениях), умеренную цену. Но пластиковые воздуховоды не пригодны для перемещения химически агрессивных газовоздушных смесей.

Различают жесткие, полужесткие и гибкие воздуховоды из пластика. Жесткие воздуховоды могут быть круглого или прямоугольного исполнения, а воздуховоды гибкие и полужесткие имеют только круглую форму в поперечном сечении.

Для изготовления воздуховодов применяют металлические, неметаллические и металлопластиковые материалы, а также строительные конструкции. Материалы для изготовления воздуховодов выбирают в зависимости от характеристики транспортируемой по воздуховодам среды.

Материалы для воздуховодов
Характеристика транспортируемой среды Изделия и материалы
Воздух с температурой не более 80°С при относительной важности не более 60 % Бетонные, железобетонные и гипсовые вентиляционные блоки; гипсокартонные, гипсобетонные и арболитовые короба; тонколистовая, оцинкованная, кровельная, листовая, рулонная, холоднокатаная сталь; стеклоткань; бумага и картон; другие материалы, отвечающие требованиям указанной среды
То же, при относительной влажности воздуха более 60 % Бетонные и железобетонные блоки; тонколистовая оцинкованная, листовая сталь, листовой алюминий; пластмассовые трубы и плиты; стеклоткань; бумага и картон с соответствующей пропиткой; другие материалы, отвечающие требованиям указанной среды
Воздушная смесь с химически активными газами, парами и пылью Керамические и трубы; пластмассовые трубы и короба; блоки из кислотоупорного бетона и пластбетона; металлопласт; листовая сталь; стеклоткань; бумага и картон с соответствующими транспортируемой среде защитными покрытиями и пропиткой; другие материалы, отвечающие требованиям указанной среды

Примечание: Воздуховоды из листовой холодно­катаной и горячекатаной стали должны иметь покрытие, стойкое к транспортируемой среде.

Углеродистая сталь обыкновенного качества по способу прокатки бывает горячекатаной, если заготовку предварительно нагревают, и холоднокатаной, т.е. без подогрева заготовки. По толщи­не такая сталь подразделяется на толстолистовую - толщиной 4 мм и более и тонколистовую - толщиной до 3,9 мм. Тонколистовая сталь толщиной от 0,35 до 0,8 мм называется кровельной.



Листовую горячекатаную сталь изготовляют в листах толщиной 0,4...16 мм, шириной 500...3800 мм, длиной 1200... ...9000 мм и в рулонах толщиной 1,2...12 мм, шириной 500...2200 мм. Применяют для изготовления воздуховодов общеобменной вентиля­ции и аспирации.

Листовую холоднокатаную сталь изготовляют в листах толщиной 0,35...0,65 мм и в рулонах толщиной 0,35...3 мм. Применяют для производства спирально-шовных воздуховодов.

Оцинкованную тонколистовую сталь выпускают с двусторонним оцинкованным покрытием, предохраняющим сталь от коррозии, в листах толщиной 0,5...3,0 мм, шириной 710...1500 мм. Применяют для изготовления только фальцевых воздуховодов.

Тонколистовую рулонную холоднокатаную углеродистую сталь используют шириной 100...1250 мм, толщиной 0.6...2 мм.

Холоднокатаную ленту из низкоуглеродистой стали толщиной 0,05...4 мм, шириной до 450 мм применяют для изготовления спирально-замковых воздуховодов.

При изготовлении воздуховодов и деталей вентиляционных систем широко используют конструкционные материалы - сортовую и фасонную сталь, а также алюминиевый прокат.

Полосовую сталь выпускают шириной от 12 до 200 мм, толщиной от 4 до 16 мм. Поставляют эти изделия в мотках или полосах в зависимости от размеров. Из полосовой стали изготовляют фланцы, средства крепления.

Угловую равнополочную сталь изготовляют профи­лей № 2...№ 16, что соответствует ширине полки в сантиметрах; толщи­на такой стали от 3 до 20 мм. Из стали изготовляют каркасы, фланцы воздуховодов.

Цветные металлы

Алюминий - серебристо-белый, легкий (ρ = 2700 кг/м3) и пластич­ный металл. Взаимодействуя с кислородом воздуха, алюминий покры­вается тонкой и прочной пленкой оксида алюминия, которая хорошо защищает металл от коррозии. Из алюминия изготовляют фальцевые и сварные воздуховоды.

Листы из алюминия и алюминиевых сплавов, выпускаемые толщиной от 0,4 до 10 мм, шириной 400, 500, 600, 800 и 1000 мм, длиной 2000 мм, применяют для изготовления воздуховодов и отдельных деталей вентиляционных систем.

Уголки прессованные из алюминии и алюминиевых сплавов выпускают шириной полки от 10 до 250 мм. При одной и той же ширине полки профили могут быть различной толщины. Из уголков изготовляют отдельные элементы сетевого оборудо­вания.

Алюминиевую фольгу выпускают толщиной от 0,05 до 0,4 мм и поставляют и рулонах. Используют фольгу для гиб­ких гофрированных воздуховодов. Высота гофра 4 мм, расстояние меж­ду гофрами 10 мм. Такие воздуховоды легко изгибаются и служат для присоединения к местным отсосам.

Титан - серебристо-белый тугоплавкий металл, обладающий высо­кой коррозионной стойкостью (особенно к кислотам), достаточно плас­тичный, плотностью ρ=4500 кг/м3. Высокая прочность титановых спла­вов сохраняется при температурах от -253 до +500 °С.

Технически чистый титан марки ВТ1-00 или ВТ1-0, а также низколе­гированные сплавы повышенной пластичности марки СТ4-0 или СТ4-1 в виде листов толщиной от 0,4 до 4 мм применяют для изготовления воздуховодов. Воздуховоды из титана изготовляют, как правило, свар­ными.

Медь - вязкий металл красноватого цвета, тепло- и электропровод­ный, достаточно пластичный, что позволяет обрабатывать его прокат­кой, штамповкой, волочением. Медь в чистом виде, как правило, в вентиляционных системах не применяют; обычно используют сплавы меди с другими металлами. Сплав меди с цинком называется латунью. Латунь по сравнению с медью прочнее, пластичнее и тверже, устойчи­вее против коррозии и при литье обладает хорошей заполняемостью форм.

Медно-цинковые сплавы (латуни) выпускают семи марок: Л96, Л90, Л85, Л80, Л70, Л68, Л62 (цифры указывают средний процент меди в сплаве). Из латуни изготовляют искрозащищенное вентиляционное оборудование.

Металлопласты

Металлопласт - конструкционный материал, представляющий собой низкоуглеродистую холоднокатаную тонколистовую сталь, покры­тую пленкой. Промышленность выпускает металлопласт двух видов: с одно- и двусторонним покрытием.

Металлопласт с односторонним покрытием выпускают в виде стальной ленты толщиной 0,5…1 мм, защищенной с одной стороны поливинилхлоридной пленкой толщиной (0,3±0,03) мм. Металлопласт поставляют в рулонах шириной полосы (1000±5) мм, массой до 5,5 т. Наружный диаметр рулона не более 1500 мм, внутренний (500 ±50) мм.

Металлопласт с двухсторонним покрытием представ­ляет собой стальную ленту толщиной 0,5...0,8 мм, обе стороны которой защищены пленкой из модифицированного полиэтилена толщи­ной 0,45 мм.

Металлопласт обладает свойствами, присущими металлу и пласт­массам; он пластичен, может быть подвергнут обработке на меха­низмах, изготовляющих фальцевые воздуховоды.

Неметаллы

Листы из пластифицированного поливинилхлорида (винипласт листовой ) изготовляют из непластифицированной поливинилхлоридной композиции с добавлением вспомогательных ве­ществ (стабилизаторов, смазочных материалов и др.) прессованием пленок или экструзией.

Листы из непластифицированного поливинилхлорида производят длиной не менее 1300 мм, шириной не менее 500 мм. Толщина листов зависит от их марки и составляет для листового винипласта: ВИ - от 1 до 20 мм; ВНЭ и ВП - от 1 до 5 мм; ВД - от 1,5 до 3 мм.

Листовой винипласт обладает высокой механической прочностью, хорошо поддается как ручной, так и механической обработке на обыч­ных металлодеревообрабатывающих станках. При разогреве приобрета­ет пластичность и легко формуется. После охлаждения нагретого вини­пласта все его механические свойства восстанавливаются. Винипласт - электроизолирующий материал.

Листовой винипласт применяю при изготовлении воздуховодов в качестве антикоррозионного материала, работающего при температуре от -20 до + 00 °С.

Полиэтилен - синтетический полимер, плотный, характеризующий­ся высокой химической стойкостью. Применяют при температуре до 60 °С. Из полиэтилена высокой плотности изготовляют пленку для вен­тиляционных воздуховодов, которая поступает на стройку в виде руло­на, намотанного па втулку. В рулон наматывается 300...400 м пленки шириной до 4000 мм, толщиной от 30 до 200 мкм.

Стеклоткань - материал, образованный переплетением взаимно пер­пендикулярных нитей стеклянного волокна. Из стек­лоткани СПЛ, пропитанной латексом, изготавливают гибкие армированные воздуховоды с применением клея и пружин­ной проволоки из углеродистой стали диаметром 2...2,5 мм.

Текстильные материалы

Виды воздуховодов

1. Круглые 2. Прямоугольные

Рис. 1. Детали сетей воздуховодов:

1 - прямые участки воздуховодов круглого (а) и прямоугольного (б) сечений;

II - узлы ответвлений воздуховодов кругло­го (в) и прямоугольного (г) сечений;

III - отводы и полуотводы воздухово­дов круглого (д) и прямоугольного (е) сечений;

IV - переходы;

1 - тройник;

2 - переход;

3 - крестовины;

4 - заглушка


Рис. 2. Унифицированные детали воздуховодов круглого сечения: а - прямошовная прямая часть; б - спиральнозамковая прямая часть; фасонные части: в - отвод 90 град; г - отвод 30, 45, 60 град; д - переход симметричный до В = = 400 мм; е -переход несимметричный свыше В = 400 мм; ж -ниппель внутренний, предназначен для соединения прямых частей воздуховодов между собой; з - ниппель наружный, предназначен для соединения фасон­ных частей воздуховодов между собой; и -заглушка торцевая


Рис. 3. Унифицированные детали воздуховодов прямоугольного сечения: а - пря­мая часть: фасонные части; б - отвод 90 град; в -отвод 45 град; г - заглушка; д - утка; е - переход с прямоугольного сечения на круглое; ж - переход с прямоугольного сечения на прямоугольное

3. Полуовальные

А - малая ось;

В - большая ось


Рис. 5. Фасонные части полуовальных воздуховодов:

а - отвод 90 град:

а1 - вертикальный;

а2 - горизонтальный;

б - переход несимметричный;

в - переход симметричный;

г - ниппель внутренний;

д - заглушка;

е - тройник;

ж - врезка в круг;

з - переход с овального сечения на круглое;

и - переход с овального сечения на прямоугольное


4. Спирально-замковые

Рис. 6. Спирально-замковый воздуховод

Рис. 7. Схема установки (а) для произ­водства спирально-замковых воздуховодов:

1 - разматыватель,

2 - механизм резки и сварки концов ленты,

3 - механизм обезжиривания лен­ты,

4 - лента,

5 - профилировочный стан,

6 - формовочная головка,

7 - спирально-замковая труба

5. Спирально-сварные

Рис. 8. Спирально-сварной воздуховод

6. Полужесткие и текстильные

Рис. 9. Полужесткие воздуховоды:

а - принципиальная схема полужесткого воз­духовода;

б - полужесткий воздуховод

Рис. 10. Текстильный воздуховод

7. Металлопластиковые

Рис. 11. Воздуховод из металлопласта:

а - общий вид,

б - конструкция шва,

в, г - двусторонний и односторонний металлопласт,

1- поливинилхлоридная пленка,

2 - клей,

3 - стальная лента

Фальцевые соединения

Рис. 12 Виды фальцевых соединений;

а - лежачий фальц,

6 -лежачий фальц с двойной отсечкой,

в - угловой фальц,

г- угловое фальцевое соединение с просечными защелками,

д - стоячий фальц,

е -зиговое соединение,

ж -реечное соединение

Рис. 13. Фальцевое соединение круглых элементов на зиге


Рис. 14. Лежачий фальц

Рис. 15. Стоячий фальц


Рис. 16. Угловой фальц

Рис 17.Питсбургский (московский) фальц


При изготовлении воздуховодов листы соединяются между собой:

  • на сварке (встык или внахлестку)
  • на фальцах

Сварные соединения

Рис. 1.2.1 Сварные соединения:

а - стыковые, 6 - нахлесточные

Рис 19. Схемы сварки круглых воздуховодов:

а - внахлестку,

6 - по отогнутым кромкам с одной стороны,

в - по отогнутым кромкам с двух сторон

Рис. 18. Классификация швов:

а - в зависимости от положения свариваемых деталей,

6 - по направлению усилий,

в - по длине,

г - по степени усиления

Рис. 20. Виды сварных соединений, применяемых при сварке металличе­ских воздуховодов:

а - продольный шов для воздуховодов круглого и прямоугольного сечений, картин,

6 - кольцевой шов для отводов круглого сечения,

в - сварка круглых фланцев и фа­сонных частей воздуховодов прямоугольного сечения,

д - сварка прямоугольных флан­цев и фасонных частей,

е - приварка фланцев прямоугольного и круглого сечений,

ж - прихватка фланцев прямоугольного сечения,

з - сварка спирально-сварных воздуховодов,

и - сварка вентиляционных коробов

Рис. 21. Схема сварки участка прямоугольного воздуховода:

а - сварка узлов,

6 - прихватка отвода к прямому участку


Рис. 22. Защелочный фальц

Способы соединения воздуховодов между собой

Фланцевые соединения

Фланцы из углового проката

Рис. 23. Фланец из угловой стали

Фланцы из профилированной оцинкованной ленты

Рис. 24. Фланец из Z-образной рейки:

1 - Z-рейка;

2 - С-рейка;

3 - уплотне­ние 8 х 15;

4 - уголок внутренний;

5 - уголок декоративный

Рис. 25. Фланец из профиля типа «шина»

Фланец из полосовой стали

Рис. 26. Фланец из полосовой стали фланцевых воздуховодов диаметром 100...375 мм

Фланец из листовой стали

Рис. 27. Фланец из тонколистовой стали с бортиками

Рис. 28. Положение замыкающего попе­речного торцового

фальца на возду­ховодах круглого сечения

Бесфланцевые соединения

Рис.29. Бесфланцевое соединение воздуховодов прямоугольного се­чения:

а, б - последовательность подготовки воздуховодов;

в - сечение соединения;

г - соединение в сборе;

1 - профиль замка;

2 - резиновый уплотнитель;

3 - капро­новый уголок;

4 - декоративный уголок;

5 - соединительная рейка;

6 - уголок жесткости

Раструбное (ниппельное) соединение

Рис. 30.Ниппельное соединение круглых воздуховодов

Бандажное соединение


Рис. 31. Бандажные соединения звеньев круглых воздуховодов:

а - с резиновыми уп­лотнителями;

б - с бутепроловым уплотнителем;

в - на заклепках;

г - с врез­ками при монтаже:


1 - бандаж;

2 - уплотнитель;

3 - стальные уголки;

5 - патрубок;

6 - фартук;

7 - воздуховод;

8 - бандаж с бутепроловым уплотнителем;

9 - нижняя петля;

10 - бутепрол


Телескопическое соединение

Рис. 32. Телескопическое соединение воздуховодов:

а - на саморежущихся шуру­пах;

б - с помощью комбинированных заклепок;

1 - самонарезающийся шуруп;

2 - заклепка односторонней клепки

Рис. 33. Соединение деталей односторонней клепкой:

1,2 - детали;

3 - корпус заклепки;

4 - головка стержня;

5 - ослабленное сечение стержня;

6 - заклепочник или пистолет;

7 - цанга заклепочника;

8 – стержень.

Планочное соединение


Рис.34. Планочное соединение стальных

воздуховодов:

а - общий вид;

б - типы планок;

в - Т-образные рейки

Изготовление круглых воздуховодов

Рис. 2.1. Типовая технологическая планировка производственного участка изготовления воздуховодов на фальцевом соединении:


а - прямых участков;

6 - фасонных частей;

1- контейнер для металла;

2 - стол разметочный;

3 - ножницы гильотинные;

4 - листогибочный меха­низм;

5- вальцовочные механизмы;

6- рольганги;

7 - контейнеры для фланцев;

8 - машина точечной сварки;

9 - фальцепрокатные механизмы;

10- механизмы для офланцовки;

11- верстаки;

12 - окрасочный конвейер;

13 - механизм для

отбортовки прямоугольных воздуховодов;

14 - сварочный трансформатор;

15 - фальцеосадочный механизм;

16 - высечной механизм;

17 - механизм для отгиба криволинейных кромок;

18 -зигмашина;

19 -механизм для осадки угловых фальцев;

20 -выпрямитель селеновый


Последовательность изготовления

Рабочий цикл Операция Оборудование и инструменты Эскиз операции
Разметка и вырезка заготовок Обрезать по двум сто­ронам стандартный лист под углом 90°(при необходимости) Ножницы гильотиновые
Разметить элементы вентиляционной заготов­ки Стол разметочный, шаб­лоны, чертилка, линей­ка, циркуль
Вырубить уголки у элементов Ножницы ручные пнев­матические
Прямолинейная резка элементов по разметке Ножницы гильотиновые
Криволинейная резка элементов по разметке Высечной механизм
Заготовка полуфабрикатов Прокатать фальц (прямой) Фальцепрокатные ме­ханизмы
Прокатать криволинейный фальц и кромку Механизм для образо­вания криволинейных кромок
Вальцевать (гнуть) эле­менты заготовок Механизмы для вальцевания
Листогибочные механизмы
Вырезать элементы из царги с образованием зига и гофра Механизмы для изготовления отводов,шаблоны кольцевые, ролики
Сборка элементов Собрать вентиляционную заготовку, замкнуть и осадить фальц Механизм для осадки фальцев
Собрать вентиляцион­ную заготовку, замкнуть и осадить фальц Слесарный верстак; мо­лоток
Собрать вентиляцион­ную заготовку на зигах Механизм для изготов­ления отводов
Собрать элементы де­талей на рейке и осадить Слесарный верстак, ки­янка, молоток
Офланцовка
Установить фланцы на концы собранных изде­лий и отбортовать на зеркало фланца или при­варить Полуавтоматы для сварки в среде со 2
Окраска Окраска воздуховодов и сушка Окрасочный конвейер
Комплектовка и маркировка
Укладка на склад или в контейнер