Самое важное свойство почвы. Состав и свойства почвы. Механический состав и его влияние на почву

Любая почва имеет свои характерные свойства - физические, химические, а также биологические. У каждого грунта своя структура и способность связывать между собой физические и химические элементы; отличаются почвы и своими генетическими свойствами. Нередко студентам экологических факультетов приходится искать ответ на экзаменационный вопрос: «Назовите основные свойства почв». В таком случае можно перечислить несколько характеристик грунта.

Поглотительная способность

Главным свойством любой почвы является плодородие. Но оно зависит также и от других ее характеристик. Поглотительная способность - одно из основных свойств почвы, без которого питание растений было бы невозможным. Под термином «поглотительная способность» понимается способность грунта поглощать разнообразные вещества из того раствора, который через нее проходит. К. К. Гедройц различал несколько типов данной способности:

  • Биологическая . Она непосредственно связана с жизнедеятельностью растений, а также тех микроорганизмов, которые обитают в толщах почвы. Биологическое поглощение всегда является избирательным - ведь микроорганизмы, которые обитают в почвах, не могут поглощать все химические элементы, а лишь те, что соответствуют их физиологическим потребностям.
  • Химическая. Благодаря этому типу в почве накапливаются химические элементы из внешней среды. Данный вид поглотительной способности играет большую роль в накоплении кальция, натрия, марганца, алюминия и других веществ.
  • Физическая . Значение данного типа поглотительной способности невелико - благодаря этому свойству в почве могут накапливаться различные газы, вода и т. д. Физическая поглотительная способность - это удерживание на поверхности грунта различных веществ за счет абсорбционных сил.
  • Обменная. Особенно важна при удобрении почв. К данному типу поглощения относится способность мелкодисперсных частиц грунта поглощать из внешней среды катионы.
  • Механическая. Как и всякое другое пористое тело, почва задерживает мелкие частицы из фильтрующихся растворов. Благодаря этому типу поглощения в грунте распределяются илистые частицы и нерастворимые удобрения (например, или известь).

Питательность

Поглотительная способность является одним из основных свойств почвы, которая влияет на то, насколько почва является питательной. Ведь растения всасывают только растворы нужных веществ. Для того чтобы вещества могли быть усвоены растением, необходима их низкая концентрация. Конечно, в некоторых случаях раствор может быть слишком слабым, и тогда питательных веществ не хватит. Но растение погибнет и в том случае, если концентрация солей слишком высока.

Увеличивается поглотительная способность при повышении в перегноя. Те почвы, которые богаты перегноем, всегда можно удобрять без опасений. Их излишки будут хорошо поглощены и не нанесут вреда растениям.

Основные физические свойства почвы

К данной категории относятся структура, воздушные, тепловые, физические и физико-механические свойства. Физические свойства - это плотность и пористость. Плотность почв во многом зависит от их минерального состава, содержания тех или иных химических веществ. Пористостью называется общий объем всех пор между частицами твердой почвы. Между показателями плотности и пористости почвы есть обратная зависимость - чем выше плотность, тем меньше пористость.

Основные характеристики и свойства почв давно были изучены агрономами, и эти знания успешно применяются для повышения урожайности. Одним из существенных свойств почвы является ее тепло. Грунт получает его от солнца, из нижележащих слоев, от дыхания животных. При этом не все типы почв нагреваются одинаково быстро. Светлый и сырой грунт нагревается медленнее, чем темная почва. Быстрее поглощают солнечное тепло и песчаные почвы, в отличие от глинистых.

Этот показатель также принадлежит к основным свойствам почвы. На территориях различных природных зон содержание гумуса может быть разным. Самые большие его запасы характерны для черноземного типа почв. Содержание гумуса относится к генетическим признакам, поскольку увеличение или уменьшение содержания перегноя в почве - это крайне длительный процесс. Он не является результатом временных явлений; напротив, повышенное содержание гумуса всегда представляет собой результат сложного почвообразовательного процесса.

Наличие и количество тех или иных химических элементов также является одним из основных свойств почвы. Любой грунт представляет собой четырехфазную систему - в него входит твердая, жидкая, газообразная и живая составляющие. При этом каждый из этих компонентов имеет собственный химический состав - один из важнейших показателей, так как основным свойством почвы является плодородность. Урожайность напрямую зависит от того, какие химические элементы содержатся в почве.

Почва - один из природных компонентов, составляющих среду обитания человека. Почва - особое природное образование, обладающее рядом свойств, присущих живой и неживой природе; состоит из генетически связанных горизонтов, образующих вертикальный почвенный профиль и возникающих в результате преобразования поверхностных слоев литосферы под совместным воздействием воды, воздуха и организмов; характеризуется плодородием.

Основные типы почв и их распространение. До В. В. Докучаева почвы классифицировали по отдельным свойствам - химическому или гранулометрическому составу и др. В основе современной генетической классификации почв лежит строение почвенного профиля, отражающее совокупность процессов становления, эволюции почвы и их режимы. Изменчивость в пространстве и во времени факторов почвообразования, а следовательно, и процессов, происходивших в почвах в прошлом и совершающихся в настоящем, обусловливает большое разнообразие их в природе. Основная классификационная единица почв - генетический тип. Докучаевым выделялось 10 почвенных типов, в современных классификациях - более 100. Типы подразделяют на подтипы, роды, виды, разновидности, разряды и объединяют в классы, ряды, формации, генерации, семейства, ассоциации и т. п. Принцип объединения почвенных типов в более высокие единицы в различных классификациях неодинаков: экологический - по условиям почвообразования, эволюционно-генетический (или историкогенетический) - по связям между группами почв, профильногенетический - по строению почвенных профилей, их генезису и др. Важной частью почвенной классификации является диагностика почв - система объективных признаков, позволяющих разделять их на всех таксономических уровнях классификации. Особое значение имеют диагностические признаки для определения типов и более низких таксономических единиц, так как на многих почвенных картах выделяют именно их ареалы. Большое практическое значение имеют прикладные (агропроизводственные, мелиоративные, лесоводствен-ные и др.) группировки почв.

Единая международная классификация почв не разработана. Создано значительное число национальных почвенных классификаций; некоторые из них (Россия, США, Франция) включают все почвы мира. Первая попытка создания мировой системы почв сделана ФАО -ЮНЕСКО (1968-1974 гг.) при составлении Международной почвенной карты мира.

Почвенная карта мира создана на основе классификации почв, разработанной в нашей стране. Преобладающая часть суши занята сравнительно ограниченным числом почвенных единиц, преимущественных типов, которые относились В. В. Докучаевым и Н. М. Сибирце-вым к группе так называемых зональных почв, возникающих под влиянием типичного для каждой природной зоны почвообразования. Характер размещения зональных почв на поверхности суши обширными полосами - зонами, вытянутыми вдоль полос с близким атмосферным увлажнением (в областях с недостаточным увлажнением) и с одинаковой годовой суммой температур (в областях с достаточным и избыточным увлажнением), создаёт основную закономерность пространственного распределения почв на равнинных территориях - горизонтальную почвенную зональность (широтную или меридиональную). Например, на Восточно-Европейской, или Русской, равнине отчётливо выражены широтные зоны тундровых, подзолистых, серых лесных почв, черноземов, каштановых почв, бурых пустынно-степных почв. Ареалы подтипов зональных почв располагаются внутри зон также параллельными полосами, что позволяет выделить почвенные подзоны. Например, зона чернозёмов подразделяется на подзоны выщелоченных, типичных, обыкновенных и южных чернозёмов, зона каштановых почв - на темно-каштановые, каштановые и светло-каштановые.

В работах И. П. Герасимова и других учёных были установлены закономерные изменения свойств почв внутри зон и подзон, связанные с изменениями климата и некоторых других биоклиматических условий. Это явление получило название провинциальности и фаци-альности и позволило выделить внутри зон и подзон провинции, а аналогичные провинции нескольких зон и подзон объединить в фации. Были выявлены различия рядов почвенных зон на разных континентах и крупных частях наиболее обширных континентов. Например, в восточной части Азии с севера на юг сменяются зоны тундровых, мерзлотно-таёжных, подзолистых почв и подбуров, бурых лесных почв, коричневых почв сухих лесов и кустарников, желтоземов, красноземов, красно-жёлтых ферралитных почв, а в центральной части (Западная Сибирь, Казахстан, Средняя Азия) - зоны тундровых почв, поверхностно-глеевых и подзолистых почв, чернозёмов, каштановых, бурых пустынно-степных, серо-бурых пустынных почв, серозёмов. Такие различия позволяют выделять почвенные области, каждая из которых характеризуется определённым рядом горизонтальных почвенных зон.

В горных странах отчётливо выражена высотная поясность почв. В горах с недостаточным увлажнением смена вертикальных поясов обусловливается сменой степени увлажнения, а также экспозицией склонов (почвенный покров здесь приобретает экспозиционнодифференцированный характер), а в горах с достаточным и избыточным увлажнением - изменением термических условий.

Рассмотренные почвенно-географические закономерности, обусловленные главным образом биоклиматическими факторами, опре-

деляют зонально-провинциальное строение почвенного покрова. Однако внутри зон, подзон и провинций почвенный покров неоднороден. В нём наблюдаются более или менее частые смены почвы, связанные со сменой рельефа, почвообразующих пород, глубиной залегания грунтовых вод, т. е. зависящие главным образом от литологогеоморфологических факторов. Эти смены в разной степени генетически связанных ареалов почвы, образующих определённый рисунок почвенного покрова, создают его структуру, все компоненты которой могут быть показаны лишь на крупномасштабных или детальных почвенных картах. Однако в региональном плане различные структуры почвенного покрова приурочены к определённым литологогеоморфологическим и неотектоническим структурам, что отчётливо доказывает их тесную генетическую связь.

Таблица 14

Классификация почв В. В. Докучаева (1900)

(Северное полушарие)

Класс А. Нормальные, иначе, растительно-наземные, или зональные, почвы

Класс В. Переходные почвы

Эти почвы хотя и залегают на месте своего образования, но не вполне отвечают нормальному сочетанию физико-географических и геоботанических условий данной области. При их образовании всегда доминирует какой-либо один из главных почвообразователей, например: рельеф, грунт, избыток влаги, испарение и пр.

VIII. Наземно-болотные или болотно-луговые почвы

IX. Карбонатовые почвы

X. Вторичные солонцы

Класс С. Анормальные почвы

Они вовсе не связаны с генетически нормальным комплексом местных физико-географических и геобиологических условий, постепенно сливаются с соответственными поверхностными геологическими образованиями, но тем не менее подобно последним они существенно обязаны своим происхождением воздействию климата, организмов и пр.

XI. Болотные почвы

XII. Аллювиальные

XIII. Эоловые (как типично лёссовые, так и дюнные)

Нарушение почвенных процессов в результате неправильной эксплуатации почвенного покрова приводит к усиленной эрозии почв, её засолению или заболачиванию. Принятый Федеральный закон РФ от 18.06.2001 № 78-ФЗ «О землеустройстве» предусматривает систему мер, направленных на повышение плодородия почвы и охрану её от эрозии.

Классификация почв по В. В. Докучаеву. Представление о почве как о самостоятельном природном теле с особыми свойствами, отличающими его от материнской (почвообразующей) породы, которое развивается в результате взаимодействия факторов почвообразования, появилось в последней четверти XIX в. в работах В. В. Докучаева -основателя современного почвоведения. Он предложил классификацию почв, которой пользуются и сегодня (табл. 14). До этого почвы обычно рассматривали в качестве геологических образований. Классификация почв В. В. Докучаева является системно-генетической.

Классификация почв по ФАО. Эксперты продовольственной и сельскохозяйственной комиссий ООН (FAO UN) создали свою классификацию почв, которая получила название «классификация почв ФАО».

1. Органические почвы.

Гистосоли (histosols , от греч. hist os - ткань; подразумеваются растительные ткани) - почвы, верхний горизонт которых мощностью 40-60 см состоит из органического вещества (продуктов опада деревьев, торфа и т. п.).

2. Почвы , обусловленные воздействием человека.

Антросоли (anthrosols , от греч. anthropos - человек) - почвы, глубоко преобразованные или созданные человеком.

3. Почвы , обусловленные материалом почвообразующих пород.

Андосоли (andosols , от япон. ап - темный и do - почва) - почвы,

сформированные на рыхлых продуктах вулканических извержений -вулканическом пепле, туфах и т. п., обычно имеющие темный верхний горизонт.

Ареносоли (arenosols , от греч. arena - песок) - песчано-кварцевые почвы тропиков и субтропиков со слабо выраженным гумусовым горизонтом.

Вертисоли (aertisols , от лат. vertere - оборачивать; подразумевается перемешивание почвы при периодическом набухании высыханий)- почвы, образующиеся на темных разбухающих при увлажнении глинах, трещиноватые в сухом состоянии. Встречаются в тропиках и субтропиках.

4. Почвы , обусловленные рельефом.

Флювисоли (fluvisols , от лат. fluvius - река) - почвы, образованные на современных пойменных, дельтовых и прибрежно-морских отложениях, слагающих аллювиальные или приморские низменности.

Глейсоли (gleysols , от русск. глей - серая влажная глина) - суглинистые почвы с близким уровнем почвенно-грунтовых вод, приуроченные к плохо дренируемым, обычно отрицательным элементам рельефа.

Лептосоли (leptosols , от греч. leptos - тонкий; подразумевается малая мощность почвы) - маломощные гравелисто-дресвяные почвы, с гумусовым горизонтом, залегающие на эродированных поверхностях плотных коренных пород. Распространены в горных и пустынных (холодных и жарких) регионах.

Регосоли (regosols , от греч. rhegos - покров; подразумевается рыхлый покров на поверхности плотных коренных пород) - щебнистые почвы с неразвитым профилем на продуктах механического разрушения плотных коренных пород. Приурочены к эродированным повышенным территориям.

5. Почвы , обусловленные ограниченным временем их формирования.

Камбисоли (cambisols , от лат. cambiare - изменять; имеется в виду изменение окраски, консистенции и содержания глины в разных горизонтах профиля) - почвы, образованные на суглинистых отложениях четвертичного возраста с горизонтом В, обогащенным глиной, но без признаков вмывания глины.

6. Почвы, обусловленные влажным илы переменно-влажным субтропическим и тропическим климатом и длительной эволюцией.

Ферральсоли (ferralsols , от названия химических элементов фер-рум и алюминиум) - почвы, образованные на продуктах длительного выветривания, состоящих из каолинитовой глины, кварца, гидроксидов железа и алюминия. Есть крупные конкреции гидроксидов указанных металлов.

Акрисоли (acrisols , от лат. асе г - уксус, очень кислый; имеется в виду высокая кислотность этих почв) - очень кислые глинистые почвы без новообразований гидроксидов железа и алюминия, без горизонта вымывания, но с повышенным содержанием глины в нижней части профиля.

Ликсисоли (lixisols , от лат. lixivia - промывание) - глинистые почвы, менее кислые, чем акрисоли; признаки вмывания глины отсутствуют, хотя её количество в нижней части профиля увеличено.

Нитисоли (nitisols , от лат. nitidus - блестящий) - высокоглинистые почвы с блестящей поверхностью почвенных структурных отдельностей.

Плинтосоли (plintosols , от греч. plinthos - кирпич; название дано в связи с глинисто-железистым горизонтом, отвердевающим на воздухе) - глинистые почвы, испытывающие влияние колебания уровня грунтовых вод. Характерно образование горизонта, обогащенного гидроксидами железа, иногда - алюминия в виде конкреций или панциря.

Алисоли (alisols , от названия химического элемента - алюминия ) -очень кислые почвы, содержащие обменный алюминий. Отличаются от всех других красных тропических почв составом глины, в которой наряду с каолинитом присутствуют гидрослюды и смешаннослойные минералы.

7. Почвы , обусловленные слабым выщелачиванием профиля.

Солончаки (solonchaks , от русского термина солончак) - почвы,

Солонцы (solonetz , от русского термина солонец) - почвы, содержащие большое количество обменного натрия в хорошо выраженном глинистом горизонте вмывания.

Гипсисоли (gypsosols, от названия минерала гипс) - почвы, имеющие горизонт с очень большим количеством новообразованного гипса вплоть до плотных гипсовых кор.

Кальцисоли (calcisols - от названия химического элемента кальций) - почвы, имеющие горизонт с очень большим количеством новообразованного карбоната кальция в виде конкреций, местами сливающихся в массивную карбонатную кору.

8. Почвы , обусловленные природной обстановкой степей.

Черноземы (chernozems , от русского термина чернозем) - высоко-

гумусные почвы степей с прохладным климатом.

Каштаноземы (kastanozems , от русского термина каштановые почвы) - низкогумусные почвы сухих степей с жарким климатом.

Грейземы (greyzems , от англ, grey - серый и рус. - земля) - почвы, образовавшиеся на периферии степной зоны в условиях более холодного и влажного климата.

Файоземы (phaeozems , от греч. phaios - тусклый и рус. - земля) - почвы, образовавшиеся в условиях прерий, имеющие темный цвет и богатые органическим веществом.

9. Почвы , обусловленные хорошо выраженным вмыванием глины или железисто-гумусовых соединений.

Лювисоли (livisols , от лат. luere - промывать; имеется в виду перенос глинистых частиц фильтрующимися через почву атмосферными осадками) - почвы с хорошо выраженным горизонтом вмывания глины.

Подзолювисоли (podzoluvisols , от русского термина подзол и международного термина лювисоли) - почвы с хорошо выраженным белесым горизонтом вымывания, нижняя граница которого языками вдается в нижерасположенный горизонт вмывания глины.

Подзолы {podzols , от русского термина подзол - под цвет золы) -супесчаные почвы с хорошо выраженным белесым горизонтом вымывания и ржаво-бурым горизонтом вмывания железогумусовых соединений.

Планосоли (planosols , от лат. planus - плоский; имеются в виду почвы плоского рельефа с затрудненным дренажем и сезонным поверхностным переувлажнением) - почвы с осветленным сезонно переувлажняемым верхним горизонтом, залегающим на плотном глинистом горизонте.

Как видно из приведенной характеристики, почвы в систематике ФАО группируются, с одной стороны, по преобладающему влиянию того или иного фактора почвообразования - почвообразующей породы, рельефа, деятельности человека и т. д. С другой стороны, некоторые группы почв выделяются по характеру почвообразовательных процессов, например, группа почв, обусловленных слабым выщелачиванием солей, или группа почв, обусловленных вымыванием-вмыванием глины и железоорганических соединений.

Почвенные горизонты - слои, формирующиеся в результате естественного расчленения почвы в процессе её образования; отсюда их другое название - «генетические» горизонты. Совокупность почвенных горизонтов образует почвенный профиль. Каждый почвенный горизонт более или менее однороден по механическому, минералогическому и химическому составу, физическим свойствам, структуре, окраске и т. д.; может подразделяться на подгоризонты. Почвенные горизонты обозначают буквенными символами: А - перегнойноаккумулятивный, часто ещё и элювиальный; В - иллювиальный, или метаморфический; С - материнская порода; подгоризонты обозначают с помощью индексов, добавляемых к этим символам, например Ао - лесная подстилка или степной войлок, А[ - гумусовый, А2 - подзолистый и т. д. На обрабатываемых почвах образуется пахотный горизонт А„.

Основные факторы почвообразования - климат, материнская порода, растительный и животный мир, рельеф и геологический возраст территории, а также хозяйственная деятельность человека.

Климат влияет на характер выветривания горных пород, воздействует на тепловой и водный режимы почвы, обусловливая происходящие в ней процессы и их интенсивность, и в значительной степени определяет растительный покров и животный мир.

Материнская порода в процессе почвообразования превращается в почву. От её гранулометрического (механического) состава и структурных особенностей зависят физические свойства почвы - водо- и воздухопроницаемость, водоудерживающая способность и т. д., а следовательно, водный, тепловой и воздушный режимы почвы, скорость передвижения веществ в почве и др. Минералогический состав материнской породы определяет минералогический и химический состав почвы и первоначальное содержание в ней элементов питания для растений.

Растительность непосредственно воздействует на почву: корни рыхлят и оструктуривают почвенную массу, извлекают из неё минеральные элементы. В естественных условиях минеральные и органические вещества поступают в почву и на её поверхность в виде корневого и наземного опада. Годовое количество опада изменяется примерно от 5-6 ц/га в пустынях и 10 ц/га в арктических тундрах до 250 ц/га во влажных тропических лесах. Различен и качественный состав опада: его зольность изменяется от 1 до 15 %. В почве опад подвергается воздействию микрофлоры, минерализирующей до 80-90 % его массы и участвующей в синтезе гумусовых веществ, которые образуются из продуктов распада и микробных метаболитов.

Представители животного мира (главным образом беспозвоночные, живущие в верхних горизонтах почвы и в растительных остатках на поверхности) в процессе жизнедеятельности значительно ускоряют разложение органических веществ и способствуют формированию органо-минеральных почвенных агрегатов, т. е. структуры почвы. Основное влияние рельефа заключается в перераспределении по земной поверхности климатических (влаги, тепла и их соотношения) и других факторов формирования почвы.

Время развития зрелого почвенного профиля для разных условий -от нескольких сотен до нескольких тысяч лет. Возраст территории вообще и почвы в частности, а также изменения условий почвообразования в процессе их развития оказывают существенное влияние на строение, свойства и состав почвы. При сходных географических условиях образования почвы, имеющие неодинаковые возраст и историю развития, могут существенно различаться и принадлежать к разным классификационным группам.

Хозяйственная деятельность человека влияет на некоторые факторы почвообразования, например на растительность (вырубка леса, замена его травянистыми фитоценозами и др.), и непосредственно на почвы путём её механической обработки, мелиорации, внесения минеральных и органических удобрений и т. п. При соответствующем сочетании этих воздействий можно направленно изменять почвообразовательный процесс и свойства почвы. В связи с интенсификацией сельского хозяйства влияние человека на почвенные процессы непрерывно возрастает.

Состав и свойства почвы. Почва состоит из твёрдой, жидкой, газообразной и пластической частей. Соотношение их неодинаково не только в разных почвах, но и в различных горизонтах одной и той же почвы. Имеет место закономерное уменьшение содержания органических веществ и живых организмов от верхних горизонтов почвы к нижним и увеличение интенсивности преобразования компонентов материнской породы от нижних горизонтов к верхним. В твёрдой части преобладают минеральные вещества. Первичные минералы (кварц, полевые шпаты, роговые обманки, слюды и др.) вместе с обломками горных пород образуют крупные фракции; вторичные минералы (гидрослюды, монтмориллонит, каолинит и др.), формирующиеся в процессе выветривания, - более тонкие. Рыхлость сложения почвы обусловливается полидисперсностью состава её твёрдой части, включающей частицы разного размера (от коллоидов почвы, измеряемых сотыми долями микронов (10), до обломков диаметром в несколько десятков сантиметров). Основную массу почвы составляет обычно мелкозём - частицы размером менее 1 мм. Гранулометрический состав почвы определяется относительным содержанием в ней частиц различной величины, объединяемых в группы - гранулометрические фракции. В России принята следующая классификация почвенных частиц по размерам (в мм): камни > 3, гравий - 3-1, песок крупный - 1-0,5, песок средний - 0,5-0,25, песок мелкий - 0,25-0,05, пыль крупная - 0,05-0,01, пыль средняя - 0,01-0,005, пыль мелкая -0,005-0,001, ил грубый - 0,001 -0,0005, ил тонкий - 0,0005-0,0001, коллоиды

В зависимости от соотношения физической глины (частиц мельче 0,01 мм) и физического песка (крупнее 0,01 мм) почвы по гранулометрическому составу разделяют на фракционные группы (разновидности): песок рыхлый и связный, супесь, суглинок лёгкий и средний, глина лёгкая, средняя и тяжёлая. Более подробное деление проводят по преобладанию среди частиц гравия, песка, крупной пыли, пыли и ила.

Твёрдые частицы в естественном залегании заполняют не весь объём почвенной массы, а лишь некоторую его часть; другую часть составляют поры - промежутки различного размера и формы между частицами и их агрегатами. Суммарный объём пор называется пористостью почвы. Для большинства минеральных почв эта величина варьируется от 40 до 60 %. В органогенных (торфяных) почвах она возрастает до 90 %, в заболоченных, оглеенных, минеральных -уменьшается до 27 %. От пористости зависят водные свойства почвы (водопроницаемость, водоподъёмная способность, влагоёмкость) и плотность почвы. В порах находятся почвенный раствор и почвенный воздух. Соотношение их непрерывно меняется вследствие поступления в почву атмосферных осадков, иногда оросительных и грунтовых вод, а также расхода влаги - почвенного стока, испарения, десукции (отсасывание корнями растений) и др. Освобождающееся от воды по-ровое пространство заполняется воздухом. Этими явлениями определяются воздушный и водный режимы почвы. Чем больше поры заполнены влагой, тем труднее осуществляется газовый обмен (особенно Ог и СО2) между почвой и атмосферой, тем медленнее протекают в почвенной массе процессы окисления и быстрее - процессы восстановления. В порах также обитают почвенные микроорганизмы. Плотность почвы (или объёмная масса) в ненарушенном сложении определяется пористостью и средней плотностью твёрдой

С дисперсностью ^ сопряжена большая суммарная поверхность твёрдых частиц: 3-5 м /г у песчаных почв, 30-150 м/г у супесчаных и суглинистых, до 300-400 м 2 /г у глинистых. Благодаря этому почвенные частицы, особенно коллоидная и илистая фракции, обладают большой поверхностной энергией, которая проявляется в поглотительной способности и буфсрности почвы.

Плодородие почвы - способность обеспечивать растения водой и пищей, позволяет ей участвовать в воспроизведении биомассы. Природное плодородие имеет различный характер, зависящий от состава и свойств почвы и факторов почвообразования. Под влиянием агротехнических, агрохимических и мелиоративных воздействий почва, являющаяся в сельском хозяйстве основным средством производства, приобретает эффективное или экономическое плодородие, показателем которого служит урожайность сельскохозяйственных культур.

Плодородие почв определяется минералогическим составом твёрдой части почв и органическими соединениями. Органических частиц (растительные остатки) содержится немного, и только торфяные почвы почти полностью состоят из них. В состав минеральных веществ входят Б1, А1, Бе, К, Ы, ]У^, Са, Р, Б; значительно меньше содержится микроэлементов: Си, Мо, I, В, Б, РЬ и др. Подавляющее большинство элементов находится в окисленной форме. Во многих почвах, преимущественно в почвах недостаточно увлажняемых территорий, содержится значительное количество СаСОз (особенно если почвы образовались на карбонатной породе), в почвах засушливых областей -СаБ04 и другие легко растворимые соли; почвы влажных тропических областей обогащены Бе и А1. Однако реализация этих общих закономерностей зависит от состава почвообразующих пород, возраста почв, особенностей рельефа, климата и т. д. Например, на основных изверженных породах формируются почвы, более богатые А1, Бе, щёлочноземельными и щелочными металлами, а на породах кислого состава -Бт Во влажных тропиках на молодых корах выветривания почвы значительно беднее оксидами железа и алюминия, чем на более древних, и по содержанию сходны с почвами умеренных широт. На крутых склонах, где эрозионные процессы весьма активны, состав твёрдой части почв незначительно отличается от состава почвообразующих пород. В засоленных почвах содержится много хлоридов и сульфатов (реже нитратов и бикарбонатов) кальция, магния, натрия, что связано с исходной засоленностью материнской породы, с поступлением этих солей из грунтовых вод или в результате почвообразования.

В состав твёрдой части почв входит органическое вещество, основная часть (80-90 %) которого представлена сложным комплексом из гумусовых веществ, или гумуса. Органическое вещество состоит также из соединений растительного, животного и микробного происхождения, содержащих клетчатку, лигнин, белки, сахара, смолы, жиры, дубильные вещества и т. п. и промежуточные продукты их разложения. При разложении органических веществ содержащийся в них азот переходит в формы, доступные для усвоения растениями. В естественных

условиях эти формы являются основным источником азотного питания растительных организмов. Многие органические вещества участвуют в создании органоминеральных структурных отдельностей (комочков). Складывающаяся таким образом структура почв во многом определяет её физические свойства, а также водный, воздушный и тепловой режимы.

Органоминеральные соединения представлены солями, глинистогумусовыми комплексами, комплексными и внутрикомплексными (хелаты) соединениями гумусовых кислот с рядом элементов (в их числе А1 и Ре). Именно в виде таких химических веществ последние перемещаются в почве (табл. 15).

Таблица 15

Классификация почвенных процессов как химии почв

Химия почв

Химия почвенной

Химия

Химические

Аналитическая

массы

п о чвоо бразую щ их процессов

основы

почвенного

плодородия

химия почвы

1. Учение о

1. Трансформация

химическом

вещественного

элементов

идентификации и

составе почвы:

состава при

количественного

Элементный

почвообразовании:

Валовые запасы,

определения

Синтез и разло-

Резервы

элементов и

Фазовый состав,

жение минералов,

элементов

Состав твердых

Разложение

(неспецифические

  • - состав жидких фаз,
  • - состав газовой фазы

растительных

остатков,

Синтез гумино-

вых веществ,

новообразований

2. Строение и

2. Химические

2. Балансы

2. Методы из-

свойства

процессы

элементов

мерения свойств

почвенных

дифференциации

компонентов:

почвенного

Балансы

Определение

Простые соли,

элементов в

Оксиды и

целинных

Измерение

гидроксиды,

ландшафтах,

окислительных

Глинистые

Балансы

потенциалов,

минералы,

элементов в

Определение

Органические

вещества,

Органоминеральные вещества

агрофитоценозах

коллоидно

химических

характеристик

Химия почв

Химия

Химия

Химические

Аналитическая

почвенной

почвообразующих

основы

химия почвы

массы

процессов

почвенного

плодородия

3. Свойства

3. Миграция и

3. Химические

аккумуляция

определения

Поглотитель-

химических

подвижности и

специфических

ная способность,

соединений в

доступности

почвенных

Реакция среды,

элементов

показателей.

Коллоидно-

ландшафтах

растениями:

Групповой и

химические

Формы соеди-

фракционный

свойства,

нений и их

состав гумуса:

Окислительно-

подвижность,

Обменные

восстановитель-

Термодина-

ные режимы,

мические

Групповой со-

Равновесие в

став минеральных

системе фаз

подвижности и

компонентов,

доступности

элементов

кислотности и

щелочности почв

4. Зависимость

4. Химические

свойств и состава

почв от гидротер-

регулирования

мических и биоло-

почвенного

гических условий

плодородия

Жидкая часть, т. е. почвенный раствор, - активный компонент почв, осуществляющий перенос веществ внутри них и снабжение растений водой и растворёнными элементами питания. Обычно содержит ионы, молекулы, коллоиды и более крупные частицы, превращаясь иногда в суспензию. Питание корневой системы растений химическими элементами и соединениями осуществляется за счет осмотического давления.

Г азообразная часть, или почвенный воздух, заполняет поры, не занятые водой. Количество и состав почвенного воздуха, в который входят N2, О2, СО2, летучие органические соединения и пр., не постоянны и определяются характером множества протекающих в почвах химических, биохимических, биологических процессов. Например, количество ССЬ в почвенном воздухе существенно меняется в годовом и суточном циклах вследствие различной интенсивности выделения газа микроорганизмами и корнями растений. Газообмен между почвенным воздухом и атмосферой происходит преимущественно в

результате диффузии ССЬ из почвы в атмосферу и О2 в противоположном направлении.

Живая часть почвы состоит из почвенных микроорганизмов (бактерии, грибы, актиномицеты, водоросли и др.), представителей многих групп беспозвоночных животных - простейших, червей, моллюсков, насекомых и их личинок, а также роющих позвоночных и др. Активная роль живых организмов в формировании почвы определяет принадлежность её к биокосным природным телам - важнейшим компонентам биосферы.

Процессы в почве. В процессе почвообразования материнская порода расчленяется на почвенные горизонты, которые образуют почвенный профиль. В поверхностных горизонтах накапливаются органическое вещество, азот и фосфор, обменные соединения алюминия, кальция, магния, калия, натрия; во многих случаях происходит потеря силикатных соединений (за исключением кремнезёма в форме кварца). Под влиянием факторов почвообразования в почвах протекают разнообразные процессы, которые можно объединить в следующие основные группы:

  • 1) обмен веществом и энергией между почвами и другими природными телами;
  • 2) процессы превращения веществ и энергии , происходящие в самом почвенном теле без перемещения веществ;
  • 3) процессы передвижения веществ и энергии в почвах.

К первой группе относят:

  • - многосторонний обмен газами, влагой и твёрдыми частицами в системе: атмосфера - почва - растительность (надземные органы);
  • - двусторонний обмен газами и влагой с растворёнными в ней веществами в системе: почва - грунт (породы, залегающие под почвами, включая почвообразующую и подстилающую);
  • - обмен коротко- и длинноволновой радиацией в системе: солнце -растительность - почва - атмосфера - космическое пространство;
  • - многосторонний обмен тепловой энергией в системе: атмосфера - растительность - почва - грунт;
  • - двусторонний обмен зольными веществами, соединениями азота, ССЬ и СЬ в системе: почва - высшая растительность;
  • - преимущественно одностороннее поступление влаги из почвы в растения (через корни);
  • - одностороннее поступление в почву органического вещества, синтезированного высшими растениями, несущего в себе аккумулированную энергию.

Вторая группа включает огромное количество весьма разнообразных процессов:

  • - разложение органических соединений и синтез гумусовых веществ;
  • - синтез и распад микробной плазмы; образование и распад органо-минеральных соединений, т. е. процессы, связанные с круговоротом углерода (разложение углеводов, дубильных веществ, лигнина и
  • - процессы, связанные с круговоротом азота, - аммонификация, нитрификация и денитрификация, фиксация атмосферного азота;
  • - разложение и превращение первичных и вторичных минералов и синтез вторичных;
  • - окисление и восстановление, особенно железа и марганца;
  • - замерзание и оттаивание почвенной влаги, её внутрипочвенное испарение, конденсация и т. д.

Третья группа :

  • - передвижение почвенного воздуха под влиянием меняющихся давлений и температуры;
  • - диффузное передвижение газов и водяного пара, передвижение почвенного раствора под действием силы тяжести, капиллярных, сорбционных и осмотических сил; перемещение почвенной массы роющими животными, под влиянием давления корней и др.

В основу классификации почвенных процессов могут быть положены также химические процессы (см. табл. 15).

Почвенные процессы протекают в тесной взаимосвязи и взаимозависимости, охватывая всю почвенную толщу или сосредоточиваясь в отдельных частях. Происходят они в гравитационном поле Земли, имеют циклический характер, связанный с цикличностью поступления на поверхность почвы радиационной энергии (суточные, годовые и многолетние циклы) и с биологической цикличностью живых организмов. Цикличность процессов не означает полного возврата почвы в исходное состояние. Результаты циклических процессов, происходящих в почвенной массе с самого начала формирования, и определяют становление, развитие и эволюцию почвы.

Сущность процессов, их интенсивность в разных объёмах почвы неодинаковы, большое влияние на них оказывает глубина от поверхности. Почва как открытая система связана также с другими природными системами (атмосферой, грунтом, живыми организмами) взаимным и многосторонним обменом веществ.

Совокупности процессов формирования определённых почвенных горизонтов получили наименование элементарных почвенных процессов:

  • - образование степного войлока, лесной подстилки, торфа (накопление органических остатков на поверхности почвы);
  • - гумусово-аккумулятивный процесс (накопление органоминеральных соединений и зольных элементов в верхних горизонтах);
  • - передвижение солей в растворённом состоянии с последующим выпадением из раствора;
  • - расселение (вынос растворённых солей в нижние горизонты или за пределы почвы);
  • - оглинивание, т. е. превращение первичных минералов во вторичные глинистые минералы (разложение первичных минералов и синтез вторичных);
  • - иллювиальные процессы (растворение различных веществ в верхних горизонтах почвы, перемещение растворов в более глубокие горизонты с осаждением некоторых веществ и их аккумуляцией);
  • - лессиваж - передвижение под влиянием силы тяжести мельчайших твёрдых частиц в составе суспензии;
  • - оглеение (восстановление элементов с переменной валентностью, в первую очередь железа и марганца, и связанное с этим обес-структуривание почвенной массы), осолонцевание, осолодение, опод-золивание, ожелезнение, ферралитизация, педокриогенез и др.

Почвенный раствор - жидкая фаза почвы - вода с растворёнными газами, минеральными и органическими веществами, попавшими в неё при прохождении через атмосферу и просачивании через почвенные горзонты. Вода в зависимости от влажности почвы находится в плёночной, капиллярной и гравитационной формах. Почвенный раствор динамичен, участвует в почвообразовательном процессе, физикохимических, биохимических реакциях, круговороте веществ в почве и питании растений. Состав его определяется процессами почвообразования, растительностью, общими особенностями климата, а также временем года, погодой, деятельностью человека (внесение удобрений и др.). В почвенной влаге растворены:

  • - газы - кислород, углекислый газ, азот, аммиак;
  • - минеральные вещества - соли кальция, магния, натрия, калия и другие соединения алюминия, железа, марганца, кремнезём (в форме иона 810 4 и в коллоидной форме);
  • - органические вещества - органические кислоты жирного ряда и их соли, гумусовые и фолиевые кислоты, сахара, аминокислоты и др.

В незаселенных почвах концентрация веществ в почвенном растворе невелика (обычно не превышает 0,1 %), в солончаках и солонцах - резко увеличивается (до целых и даже десятков процентов). Высокое содержание веществ в почвенном растворе вредно для растений, так как затрудняет поступление в них воды и питательных веществ, вызывая физиологическую сухость. Реакция почвенных растворов в почвах разных типов неодинакова:

  • - кислую реакцию имеют подзолистые, серые лесные, торфяные почвы, краснозёмы, желтозёмы;
  • - щелочную - содовые солонцы;
  • - нейтральную или слабощелочную - обыкновенные чернозёмы, луговые и коричневые почвы.

Слишком кислый и слишком щелочной почвенный раствор отрицательно влияет на рост и развитие растений.

Буферность почвы - свойство почвы препятствовать изменению её реакции (pH) под действием кислот и щелочей. Чем больше в почвенном растворе солей сильных оснований и слабых кислот, тем более буферна почва по отношению к кислым удобрениям; при наличии солей слабых оснований и сильных кислот почва буферна к щелочным удобрениям. Так как раствор находится в постоянном взаимодействии с содержащейся в почве твёрдой фазой, то последняя также оказывает существенное влияние на буферность. Чем больше коллоидных частиц и гумуса в почве (например, чернозёмы) и чем больше они содержат поглощённых оснований, тем буфернее почва по отношению к кислым удобрениям; поглощённый коллоидами водород (подзолистые почвы, краснозёмы) способствует увеличению буферности почвы к щелочным удобрениям. Наиболее буферны почвы тяжёлого (глинистого) механического состава. Атмосферные осадки, грунтовая и оросительная вода могут изменить реакцию почвы, если она не обладает буферностью. Растения реагируют на изменение реакции почвы, поэтому буферность играет большую роль в их росте и развитии. Буферность почвы можно повысить внесением органических удобрений.

Реакция почвы - физико-химическое свойство почвы, функционально связанное с содержанием ионов Н и ОРТ в ее твёрдой и жидкой частях. Если в почве преобладают ионы Н, реакция почвы кислая, если ионы ОРТ - щелочная; при равенстве концентраций [Н ] и [ОРТ] - нейтральная. Реакция почв России колеблется в пределах pH от 4 до 8,2. Реакция почвы играет существенную роль в процессах миграции продуктов выветривания, причём миграционная способность соединений Бе, Мп, Бг, Си возрастает в кислой среде, а соединений Б1 и А1 - в щелочной. Реакция почвы оказывает большое влияние на уровень жизнедеятельности растений. При кислой реакции почвы многие растения страдают от повышенной концентрации ионов [Н ] и [АР ], поэтому кислые почвы необходимо известковать. Сильнощелочные почвы (солонцы, содовые солончаки), характеризующиеся повышенной концентрацией ионов [ОН - ] и бесструктурностью, также весьма неблагоприятны для роста и развития растений. Внесение гипса в сочетании с органическими удобрениями приводит к нейтрализации щелочной реакции почвы и улучшению агрономических свойств. Для количественной оценки реакции почвы употребляют различные показатели: pH суспензии почвы в воде или в растворе КС1; титруемую кислотность или щёлочность и др.

Кислотность - одно из важнейших свойств многих почв, обусловленное наличием водородных ионов в почвенном растворе, а также обменных ионов водорода и алюминия в почвенном поглощающем комплексе. Повышенная кислотность почв отрицательно влияет на развитие растений и многих полезных микроорганизмов. Различают две формы кислотности почв: актуальную , или активную, - кислотность почвенного раствора, почвенной суспензии или водной вытяжки из почв, и потенциальную , или пассивную, «скрытую», - кислотность твёрдой фазы почвы. Актуальная кислотность почв обусловлена наличием ионов водорода. Выражается условной величиной pH (отрицательный логарифм концентрации водородных ионов); при pH 7 реакция почвенного раствора нейтральная, ниже 7 - кислая; чем ниже числовое значение pH, тем выше кислотность почв. Потенциальную кислотность почв делят на обменную и гидролитическую. Обменная кислотность почв вызывает значительное подкисление почвенного раствора при взаимодействии почвы с нейтральной солью, что наблюдается при внесении физиологически кислых удобрений (хлористый калий, сернокислый аммоний и др.). По представлениям русского учёного К. К. Гедройца и некоторых других исследователей, обменная кислотность почв обусловлена присутствием в твердой фазе почвы ионов водорода, не вытесняемых нейтральными солями из поглощаемого комплекса, но способных к замещению (обмену) на другие катионы при обработке почвы растворами щелочей или гидролитически щелочных солей (например, раствором ацетата натрия, который и применяется при определении гидролитической кислотности). Степень кислотности почв необходимо учитывать при выборе минеральных удобрений, подготовке их перед внесением в почву. Основной способ борьбы с повышенной кислотностью почв - известкование.

Поглотительная способность почвы - свойство почвы задерживать в себе (сорбировать) различные вещества, соприкасающиеся с её твёрдой фазой. Поглотительная способность почв играет важную роль в процессах выветривания горных пород, выщелачивания почв, оказывает большое влияние на все почвенные процессы, тесно связана с продуктивностью почвы. Учение о поглотительной способности почв- теоретическая основа применения удобрений и химической мелиорации. Основы современного представления о поглотительной способности почвы заложил отечественный учёный К. К. Гедройц в 1912-1932 гг.

Виды поглотительной способности почв:

  • -механическая - поглощение высокодисперсных частиц почвенными порами;
  • - физическая - поглощение электролитов под влиянием поверхностной энергии;
  • - физико-химическая (обменное и необменное поглощение катионов) - обмен между катионами твёрдой фазы и почвенного раствора;
  • - химическая - образование малорастворимых и нерастворимых солей, которые выпадают в осадок и примешиваются к твёрдой фазе почвы;
  • - биологическая - сорбция веществ микроорганизмами и корнями растений.

Количество всех сорбированных почвой обменных катионов (в мг/экв на 100 г почвы) составляет ёмкость поглощения; величина её может изменяться в зависимости от содержания почвенного поглощающего комплекса (в основном коллоидов почвы), реакции почвенного раствора, природы катионов и т. п.

Азотфиксация - процесс связывания молекулярного азота (N2) атмосферы и перевода его в азотистые соединения. Азотфиксация осуществляется азотфиксирующими микроорганизмами, в том числе клубеньковыми бактериями, и другими микроорганизмами (бактерии, актиномицеты, дрожжи, грибы и сине-зелёные водоросли), обитающими в почвах, пресных водоёмах, морях и океанах.

Азотфиксация - важнейший биологический процесс, играющий большую роль в круговороте азота в природе и обогащающий почву и водоёмы связанным азотом. В воздухе 1 га почвы содержится более 70 000 т свободного азота, и только в результате азотфиксации часть этого азота становится доступной для использования высшими растениями. Свободноживущие азотфиксирующие бактерии связывают несколько десятков килограммов азота на 1 га почвы в год. Сине-зелёные водоросли на рисовых полях фиксируют до 200 кг/га азота в год. Общая прибыль азота (в надземных органах и пожнивных остатках) при культивировании бобовых растений составляет от 57,5 до 335 кг/га в год. Количество азота, внесённого в почву бобовыми растениями за счёт деятельности клубеньковых бактерий, достигает 100-250 кг/га за сезон. Естественно, этот процесс имеет большое значение для улучшения почв и повышения урожайности сельскохозяйственных культур. С этой целью перед посевом семена бобовых смешивают с препаратами клубеньковых бактерий, делают бобовые предшественниками злаков в севообороте, сеют кукурузу с клевером, вику с овсом и пр.

Исследование механизма азотфиксации очень важно. Ещё в 1894 г. С. Н. Виноградский предположил, что в результате азотфиксации образуется аммиак. Современными методами исследования, в том числе с применением тяжёлого изотопа азота (лЧ), это предположение подтверждено. А. Н. Бах полагал (1934 г.), что азотфиксация - результат сопряжённого действия окислительно-восстановительных ферментов. Установлено, что восстановление молекулярного азота (N2) до аммиака (ЫНз) происходит при участии ферментной системы, содержащей железо, молибден, магний и функционирующей как переносчик электронов к N2. Азотфиксирующие ферментные системы катализируют восстановление N2 в присутствии источника энергии - аденозинтри-фосфата (АТФ) - и восстановителя, например молекулярного водорода (Н2) или гидросульфита (ЫагБгОД Таким образом, собственно азотфиксация, осуществляемая с помощью ферментов, не нуждается в кислороде и является восстановительным процессом.

Денитрификация (от лат. de - приставка, означающая здесь завершение действия, nitrogenium - азот и facio - делаю) - широко распространённый в природе процесс восстановления нитратов до молекулярного азота, вызываемый бактериями. Денитрификация протекает с образованием нитритов и закиси азота по следующей схеме:

2HN0 3 2HN0 2 -> N 2 0 N 2 .

Энергию, необходимую для восстановления нитратов, бактерии получают в результате окисления органических веществ (углеводы, спирты, органические кислоты), а кислород нитратов является акцептором электрона и водорода. Денитрификация, происходящая при окислении глюкозы, может быть выражена уравнением:

5С 6 Н, 2 0б + 24KN0 3 -> 24КНС0 3 + 6С0 2 + 12N 2 + 18Н 2 0.

Существуют также особые виды денитрифицирующих бактерий, восстанавливающие нитраты при окислении серы или молекулярного водорода. Денитрификация сильно угнетается и прекращается полностью в присутствии молекулярного кислорода. С денитрификацией не следует смешивать восстановление нитратов до аммиака, связанное с ассимиляцией микроорганизмами нитратов как источника азота. Такой способностью обладают многие бактерии, а также актиномицеты и грибы, которые вообще не способны вызывать денитрификацию. От денитрификации следует отличать ложную денитрификацию, при которой в культуре бактерий или в природе происходит чисто химическое взаимодействие нитритов с аммонийными солями, аминами или амидами, сопровождаемое выделением молекулярного азота. Например, NH 4 C1 + HN0 2 -> N 2 + НС1 + 2Н 2 0. В 1 г почвы содержатся десятки и сотни тысяч денитрифицирующих бактерий. Однако денитрификация в почве может протекать энергично только при определённых условиях: достаточном количестве нитратов и легко разлагаемого микроорганизмами безазотистого органического вещества, оптимальной реакции (pH 7,0-8,2) и температуре (25-30 °С), а главное при анаэробных условиях. Именно поэтому денитрификация протекает весьма интенсивно во влажных, плохо аэрируемых почвах. При денитрификации содержание азота в почве падает в результате выделения молекулярного азота и следов закиси азота, что влечёт за собой снижение урожайности субстрата. После внесения в глинистую почву нитратов и растительных остатков за 10 дней 75 % азота нитратов улетучивается из нее в виде молекулярного азота. Хорошая аэрация почвы (обработка), уменьшение ее влажности в определённые периоды (дренаж), создание условий для лучшего потребления нитратов почвы культурными растениями - всё это может понизить денитрификацию в почве.

Денитрифицирующие бактерии - бактерии, восстанавливающие нитраты до молекулярного азота. К денитрифицирующим бактериям относятся представители Pseudomonas, Achromobacter, Bacillus и

Micrococcus. Все денитрифицирующие бактерии - аэробы и могут окислять органическое вещество за счёт кислорода воздуха, но, попадая в анаэробные условия, они используют кислород нитратов как акцептор электрона («дыхание за счёт нитратов»). Выращивают денитрифицирующие бактерии на питательных средах с нитратами и индикатором, меняющим цвет при восстановлении нитратов в среде. Денитрифицирующие бактерии распространены в почве, воде и грунте водоёмов.

Засолённые почвы - почвы с повышенным (более 0,25 %) содержанием легкорастворимых в воде минеральных солей. Встречаются преимущественно в южных засушливых областях многих стран (Пакистан, Индия, Китай и др.), часто пятнами среди незасоленных почв. Содержат главным образом соли серной (сернокислые натрий, кальций и магний), соляной (хлористые натрий, кальций и магний) и угольной (натриевая в двух формах: углекислой соли, или нормальной соды, и двууглекислой соли, или питьевой соды) кислот. Иногда в засоленных почвах встречаются натриевая и кальциевая соли азотной кислоты. В зависимости от количества содержащихся в почве солей, характера их распределения по почвенным горизонтам засоленные почвы подразделяются на солончаки (1-3 % солей и более), солончаковые (менее засоленные) и солончаковатые (засоленные ниже пахотного слоя). Для установления степени их засоленности определяют сумму токсичных солей, связанных с ионами хлора и сульфата. От засоленных почв отличают солонцеватые, содержащие поглощённый натрий; иногда солонцеватость сочетается с солончаковатостью. Обычно более токсичны хлористые соли. Кроме того, легкорастворимые соли повышают осмотическое давление почвенного раствора и создают так называемую физиологическую сухость, при которой растения страдают так же, как и от почвенной засухи. Избыток воднорастворимых солей в почве приводит к изреженности растительного покрова и появлению особой группы дикорастущих видов растений -солянок, или галофитов, приспособленных к жизни на засоленных почвах.

Засоленные почвы образуются в результате накопления солей в почве и почвенно-грунтовых водах, а также затопления суши морской солёной водой. Обязательными факторами накопления солей на суше и засоления ими почв являются засушливый климат и затрудненный отток поверхностных и подпочвенных вод. На орошаемых землях часто наблюдается так называемое вторичное засоление, если в подпочвах или грунтовых водах много солей. При орошении бессточных равнин происходит подъём уровня солёных грунтовых вод, что и приводит к засолению почв. Правильным ведением хозяйства можно устранить неблагоприятное течение процессов засоления, изменив его естественную направленность. Достигается это сочетанием промывок почвы с искусственным оттоком грунтовых и промывных вод с помощью дренажа. Промывать засоленные почвы лучше осенью или зимой, так как в это время сокращается испарение, способствующее возврату солей.

Солонцы - почвы, формирующиеся в условиях непромывного водного режима при накоплении в почвенном поглощающем комплексе натрия (от 10-15 до 70 % ёмкости поглощения), поступающего из почвенного раствора или грунтовых вод (процесс осолонцевания). Профиль солонцов расчленён на почвенные горизонты: А - элювиальный, или гумусовый (мощность от 2-3 до 15-25 см, содержание гумуса от 1-5 до 9-10 %); В - иллювиальный, или солонцовый (10-20 см); ВС - переходный (здесь возможно скопление гипса, сульфата натрия и др.); С - материнская порода. Солонцы характеризуются щелочной реакцией, высоким содержанием соды (1ЧаНСОз), особенно в содовых солонцах, вязкостью, липкостью и набуханием во влажном состоянии; сильным уплотнением и твёрдостью - в сухом; столбчатой, призматической или глыбистой структурой иллювиального горизонта; высокой подвижностью коллоидов. Среди солонцов выделяют типы: чернозёмные, каштановые, лугово-чернозёмные, субтропические и др., которые подразделяются на подтипы (солончаковые, типичные, осолоделые, остаточные) и роды (содовые, хлоридно-сульфатные).

Солонцы встречаются пятнами в степных, полупустынных и пустынных зонах Африки, Азии, Южной Америки, Австралии; в СНГ -в Нижнем Поволжье, на Северном Кавказе, в Казахстане и др. При освоении проводят промывку, гипсование почв, глубокую вспашку, вносят органические и минеральные удобрения, применяют травосеяние, искусственные структурообразователи. После окультуривания на солонцах выращивают сахарную свёклу, сою, зерновые культуры (пшеницу, рожь, ячмень, просо) и др.

Агрохимический анализ - определение лабораторными методами химического состава растений, кормов растительного происхождения, почвы, удобрений, пестицидов (ядохимикатов).

В результате анализа растений определяют содержание макро- и микроэлементов (азот, фосфор, калий, кальций, магний, сера, железо, бор, марганец, медь, молибден, цинк, кобальт и др.), получаемых растением из почвы, а также важнейших органических соединений (белки, жиры, углеводы, витамины, аминокислоты и др.), характеризующих качество кормов и многих других растительных продуктов (в сахарной свёкле, например, оценивают содержание сахара, в картофеле - крахмала, в зерне пшеницы - белка и т. д.). Анализ удобрений и пестицидов необходим преимущественно в контрольных целях.

В минеральных и местных удобрениях определяют содержание и формы питательных веществ; в суперфосфате, кроме того, устанавливают кислотность; в известковых удобрениях - содержание кальция и магния; в торфе - влажность, зольность, кислотность, степень разложения; в пестицидах - процент действующих химических соединении (убивающих сорные растения, отравляющих насекомых-вредителей и возбудителей бактериальных, грибных, вирусных заболеваний сель-скохозяйственых культур).

В агрохимическом анализе пользуются различными методами; всё шире применяются хроматография всех видов (газовая, жидкостная и смешанная), спектрофотометрия, пламенная фотометрия, стабильные и радиоактивные изотопы и другие методы.

Эрозия почвы - разрушение почвы водой и ветром, перемещение продуктов разрушения и их переотложение. Водная эрозия проявляется на склонах, где стекает дождевая или талая вода, подразделяется на плоскостную (сравнительно равномерный смыв почвы под влиянием стока воды, не успевающей впитаться), струйчатую (образование неглубоких промоин, устраняемых обычной обработкой) и глубинную (размыв потоками воды почв и горных пород). Ветровая эрозия , или дефляция, развивается на любых типах рельефа, в том числе на равнинах, бывает повседневной (ветры малой скорости поднимают в воздух почвенные частицы и относят их на другие участки) и периодической - пыльные бури (сильные ветры поднимают в воздух верхний слой почвы, иногда вместе с посевами, и переносят почвенные массы на большие расстояния).

По степени разрушения эрозию почв подразделяют на нормальную (естественную) и ускоренную (антропогенную). Нормальная эрозия почв протекает медленно, плодородие почвы не снижается. Ускоренная эрозия связана с хозяйственной деятельностью человека - с неправильной обработкой почвы и орошением, нарушением растительного покрова при выпасе скота, сведением лесов, строительными работами.

При сильном развитии эрозии почв снижается плодородие земель, повреждаются посевы, овраги превращают сельскохозяйственные угодья в неудобные земли и затрудняют обработку полей, происходит заиление рек и водоёмов. Эрозия почв разрушает дороги, линии связи, электропередач и другие коммуникации.

Эрозия почв наносит огромный ущерб сельскому хозяйству. Особо опасные размеры она приняла в США и Канаде, где длительное время практиковалось использование земли «на истощение», а также в странах Средиземноморья, Ближнего Востока, в Индии, Пакистане, Китае, Южной Африке и Австралии. Вследствие эрозии почв на земном шаре выбыло из сельскохозяйственного оборота свыше 50 млн га пахотных земель. В России, по данным государственного учёта земель, в защите от водной эрозии нуждается около 200 млн га (Центральночернозёмные области, в Поволжье, на Дону, на Северном Кавказе, в горных районах Закавказья). Ветровая эрозия угрожает более 100 млн га земель (Южная Сибирь, Заволжье) и проявляется чаще на почвах лёгкого гранулометрического состава.

Борьба с эрозией почв - одна из важнейших государственных задач развития сельского хозяйства. Для её решения разработаны зональные комплексы взаимодополняющих агротехнических, лесомелиоративных, гидротехнических и организационно-хозяйственных противоэрозионных мероприятий. Агротехнические мероприятия (обработка участков и посев поперёк склонов; глубокая, более 22 см, вспашка, чередуемая через 2-3 года с обычной вспашкой; плоскорезная и безотвальная обработка почвы; весеннее рыхление зяби полосами; щелевание и залужение склонов) способствуют регулированию стока талых и дождевых вод и значительно уменьшают смыв почвы. В районах распространения ветровой эрозии вместо вспашки применяют плоскорезную обработку почвы культиваторами (плоскорезами) и другими устройствами с сохранением стерни на поверхности (почвозащитная технология обработки почвы), что уменьшает распыление и способствует большему накоплению почвенной влаги. Во всех районах, подверженных эрозии почв, большое значение имеют почвозащитные севообороты, а также посевы сельскохозяйственных культур между кулис из высокостебельных растений. Из лесомелиоративных мероприятий эффективны защитные лесные насаждения (полезащитные, приовражные и прибалочные лесные полосы). Из гидротехнических мер применяют террасирование на крутых склонах, сооружают водозадерживающие валы и водоотводящие канавы, быстротоки и перепады в руслах оврагов и ложбин. Противоэрозионные организационно-хозяйственные мероприятия обычно разрабатывают при землеустройстве.

Полезащитное лесоразведение - выращивание полезащитных лесных полос по границам полей севооборотов (а при больших полях - и внутри них). Входит в систему защитного лесоразведения, составляющего основу агролесомелиорации. Полезащитные лесные полосы предохраняют почву от эрозии, задерживая поверхностный сток, улучшают её водный, температурный и питательный режимы, уменьшают скорость ветра, сохраняют снег на полях, что повышает почвенное плодородие, улучшает климатические и гидрологические условия местности, ослабляя влияние засух и суховеев, увеличивает урожай сельскохозяйственных культур. По многолетним опытным данным урожаи на полях, расположенных среди лесных полос, на 20-25 % выше, чем на участках в открытой степи. Наибольшую прибавку урожая под защитой лесных полос дают озимые зерновые, технические культуры, травы и корнеплоды.

Полезащитные лесные полосы размещают на плоских водоразделах и пологих склонах (до 1,5°). Продольные (или основные) полосы располагают поперёк направления господствующих ветров (с возможным отклонением от перпендикулярного не более 30°), вдоль длинных сторон полей и параллельных им линий внутри полей; поперечные -вдоль коротких сторон полей. Расстояние между продольными поло-

сами на серых лесных почвах, оподзоленных и выщелоченных чернозёмах должно быть не больше 600 м, на типичных, обыкновенных и предкавказских чернозёмах - 500 м, на южных и других развеваемых чернозёмах - 400 м, на темно-каштановых и каштановых почвах -350 м; между поперечными - в 2-4 раза больше, чем между продольными, но не более 2000 м. В местах стыка оставляют разрывы длиной 25 м. Ширина полезащитных лесных полос от 7,5 до 15 м.

В полезащитном лесоразведении применяют ветропроницаемые 3-5-рядные полосы из высокоствольных быстрорастущих деревьев, которые способствуют равномерному распределению снега на полях, снижают скорость ветра на 40-50 %, испарение влаги с поверхности почвы на 20-30 %, повышают влажность воздуха по сравнению с открытой степью на 5-10 %. Полосы ажурной конструкции - узкие, с равномерными небольшими просветами по всему профилю, продуваемой конструкции - с крупными просветами между деревьями в нижней части, ажурно-продуваемой - с крупными просветами внизу и небольшими вверху. В Заволжье, Западной Сибири, Северном и Западном Казахстане создают полезащитные лесные полосы ажурно-продуваемой и продуваемой конструкции; в Украине, в Центральночернозёмных областях - продуваемой конструкции; в Северном Кавказе, Молдавии и Средней Азии - ажурной.

Породы, выращиваемые в полезащитных лесных полосах, разделяют на главные и сопутствующие. Главные породы (дуб, лиственница, сосна, берёза бородавчатая, ясень зелёный и обыкновенный, тополи, акация белая и др.) обеспечивают наибольшую высоту, устойчивость и долговечность насаждения; сопутствующие (липы, клёны, вяз обыкновенный, ильм, берест, груша лесная, яблони, алыча, шелковица, граб обыкновенный и др.) создают условия для лучшего роста и развития главных пород, обеспечивают необходимую плотность полос в верхнем ярусе, затенение почвы и защиту её от сорняков.

Полезащитные лесные полосы выращивают рядовым (наиболее распространён) и групповым способами. При рядовом способе расстояние между рядами в лесостепной, северной и центральной частях степной зоны от 2,5 до 3 м, в южной части степной зоны - от 3 до 4 м; между растениями в ряду - от 1 до 3 м. Групповой способ иногда применяют при выращивании в полосах дуба из семян; в лунку высевают по 5-6 желудей, площадь питания групп молодых дубков такая же, как и при выращивании рядовым способом дуба из сеянцев, или 60>

При уходе за полезащитными лесными полосами применяют агротехнические меры: почву в междурядьях рыхлят культиваторами, а между растениями - тракторными рыхлителями; сорняки уничтожают гербицидами (симазин с прометрином, трисбеном и др.; доза 2- 4 кг/га действующего вещества); против вредителей и болезней древесных насаждений используют пестициды; молодые полосы поливают. Обработку почвы и уничтожение сорняков проводят до смыкания крон деревьев (до 5-10-го года жизни). Лесоводственные меры ухода: в полосах из одних главных пород обрезают нижние сучья до высоты 1-2 м и удаляют больные деревья, в насаждениях из главных и сопутствующих пород вырубают сопутствующие и некоторые главные (в первую очередь больные деревья) породы и уничтожают их поросль арборицидами.

Полезащитное лесоразведение распространено в зарубежных странах - США (особенно на Великих равнинах), Канаде (штаты Манитоба, Саскачеван, Альберта и др.), Италии, Франции, Великобритании, Дании и др.

Защитные лесные насаждения - искусственно созданные посадкой или посевом насаждения для защиты сельскохозяйственных угодий, почв, водоёмов, дорог, населённых пунктов от неблагоприятных природных факторов. Защитные лесные насаждения выращивают преимущественно в степных, лесостепных и полупустынных районах. В России - на родине степного лесоразведения - лес в открытой степи стали разводить впервые в 1696 г. по указанию Петра I (роща «Дубки» около Таганрога и др.). В более значительных объёмах к созданию защитных лесных насаждений в засушливых районах приступили в конце XVIII - начале XIX вв. Землевладелец И. Я. Данилевский в 1804-1817 гг. заложил около 1000 десятин соснового леса на песках вдоль реки Северский Донец. Лесоразведением с защитными целями занимались также землевладельцы В. Я. Ломиковский с 1809 г. в Полтавской губернии и В. П. Скаржинский с 1812 г. в Херсонской губернии. Преимущественно лощинно-балочные насаждения с 1821 г. выращивал землевладелец И. Н. Шатилов. Большую роль в создании защитных лесных насаждений в безлесных районах сыграли военные поселения на юге Украины, за время существования которых в 1817- 1857 гг. было заложено более 17 тыс. десятин искусственных лесов, главным образом на песках. Опытные работы в области степного лесоразведения начинаются с организации в 1843 г. под руководством лесничего В. Е. Граффа Великоанадольского лесничества (ныне Донецкая область). Начало научной разработке вопроса о природе степей, возможностях и методах выращивания в них защитных лесных насаждений положила экспедиция В. В. Докучаева (1892-1898 гг.).

До 1917 г. под защитными лесными насаждениями было занято 130 тыс. га. В более позднее время расширяется сеть опытных агролесомелиоративных участков, сельскохозяйственных и овражных станций, лесничеств, разрабатывающих способы создания защитных лесных насаждений для борьбы с засухой, водной и ветровой эрозией.

Совершенствуются также методы восстановления плодородия эродированных почв. Выявляется влияние защитных лесных насаждений на сток, микроклимат, снегораспределение, гидрологический режим почвы, разрабатываются приёмы выращивания защитных лесных насаждений, устанавливаются их типы, конструкция, ширина, размещение на сельскохозяйственной территории, определяется ассортимент древесных и кустарниковых пород. В России насчитывается более 2 млн га защитных лесных насаждений, в том числе полезащитных более 800 тыс. га, овражно-балочных - 540 тыс. га, на песках - 615 тыс. га.

В категорию защитных лесных насаждений входят полезащитные лесные полосы, которые закладываются по границам полей севооборотов (на больших полях и внутри них). Они уменьшают скорость и турбулентность ветров на прилегающих полях, улучшают микроклимат, распределение снега, влажность почвы, защищают почву от ветровой и водной эрозии, что повышает урожаи сельскохозяйственных культур. На пахотных склонах крутизной свыше 2° полезащитные полосы, уменьшая сток талых и ливневых вод и смыв почвы, играют важную водорегулирующую роль и называются водорегулирующими.

Защитные лесные насаждения на орошаемых землях закладывают вдоль оросительных каналов с одной или двух сторон узкими полосами из 1-4, а вдоль каналов, расположенных вне орошаемых площадей, - из 5-6 и более рядов деревьев. Эти полосы сокращают непродуктивные потери влаги на испарение из каналов и с полей, перехватывают фильтрационную воду из каналов, препятствуют подъёму грунтовых вод и вторичному засолению почвы, защищают сельскохозяйственные культуры от суховеев, пыльных бурь, каналы - от засыпания мелкозёмом, а их берега - от зарастания сорняками. Защитные лесные насаждения вокруг прудов, защищающие их от испарения и заиления, создают в виде полос из деревьев и кустарников (шириной 10-20 м) выше уреза высоких вод, при крутых берегах - выше бровки лощин. На плотинах по мокрому откосу создают 1-2-рядные закрепляющие и затеняющие защитные лесные насаждения преимущественно из ветлы; ближайшую к зеркалу воды часть водопроводящих тальвегов (длиной 20-50 м и во всю ширину паводка) засаживают кустарниками, служащими в качестве илофильтров.

Приовражные и прибалочные защитные лесные насаждения выращивают вдоль бровки оврагов и балок полосами шириной 15-30 м. Они уменьшают сток, скрепляют почву и грунт, препятствуя их размыву, и способствуют хозяйственному использованию малопродуктивных земель. Если к оврагам и балкам примыкают границы пахотных земель, то приовражные и прибалочные насаждения заменяют здесь полезащитные полосы. Овражные и балочные защитные лесные насаждения, сплошные или колковые, создаваемые по откосам, склонам и дну оврагов и размытых балок, препятствуют их дальнейшему размыву. Водорегулирующие на склонах, прибалочные и приовражные, овражные и балочные защитные лесные насаждения помогают бороться с эрозией почвы. Полосные, колковые, кулисные и массивные защитные лесные насаждения на песках способствуют хозяйственному использованию песчаных земель, предохраняя их от развевания.

Защитные лесные насаждения вокруг садов, различных плантаций, питомников создают из 3-5, внутри них - 1-2 рядов деревьев. Они благоприятно влияют на рост и продуктивность возделываемых культур. Защитные лесные насаждения на пастбищах, около животноводческих ферм и в местах отдыха скота закладывают в виде полос и колков. Полосные насаждения способствуют повышению продуктивности пастбищ, предохраняют фермы от холодных ветров и снежных заносов; крестообразные защитные лесные насаждения на пастбищах («затишки») оберегают скот от холодных ветров. Колковые насаждения создают преимущественно в виде зеленых зонтов для укрытия скота от солнцепёка.

Защитные лесные насаждения вдоль железных дорог ограждают их от снежных и песчаных заносов, закрепляют крутые склоны, размываемые откосы, снижают скорость сильных ветров, препятствуют выходу скота на железнодорожные пути. Снегозадерживающие защитные лесные насаждения проектируют в зависимости от вычисленного объёма снега, приносимого к каждой стороне железной дороги, и обычно размещают с обеих её сторон. Они состоят из широкой или нескольких узких параллельных полос. Пескоукрепительные защитные лесные насаждения вдоль железных дорог закладывают в виде системы полос из деревьев и кустарников в сочетании с посевом трав. Почвоукрепительные защитные лесные насаждения имеют вид куртин, полос, участков и т. д., их обычно создают в сочетании с водоотводящими канавами. В местах, продуваемых сильными боковыми и встречными ветрами, формируют ветроломные защитные лесные насаждения, значительно снижающие скорость ветра в зоне движения поездов, их делают по типу снегозадерживающих. Оградительные защитные лесные насаждения закладывают из наклонно посаженных ивовых кольев, образующих живой решётчатый забор, не проходимый для скота.

Защитные лесные насаждения вдоль автомобильных дорог, ограждающих их от снежных заносов, состоят из одной или двух узких 4-6-рядных полос, удалённых от дороги на 20-80 м (в зависимости от объема переносимого снега).

Вокруг городов и других населённых мест защитные лесные насаждения создают в виде массивов леса, широких или системы узких лесных полос. Они предохраняют населённые пункты от пыльных бурь, сильных ветров и т. д. Эти насаждения обычно сочетаются с насаждениями различных парков, садов, скверов, бульваров и др.

Контрольные вопросы и задания

  • 1. Что, по мнению В. В. Докучаева, представляет собой почва?
  • 2. Назовите все почвенные горизонты.
  • 3. Перечислите основные факторы почвообразования.
  • 4. Охарактеризуйте состав и свойства почвы.
  • 5. Какие процессы участвуют в образовании почв? Как они называются в совокупности?
  • 6. Дайте характеристику почвенного разреза.
  • 7. Что такое реакция почвы?
  • 8. Что такое кислотность почвы?
  • 9. Назовите основные типы почв. Как они распространены в природе?
  • 10. Что такое азотфиксация в почве?
  • 11. Что такое денитрификация в почве? И какова роль денитрифицирующих бактерий в почве?
  • 12. Охарактеризуйте засоленные почвы и солонцы. Чем они отличаются друг от друга?
  • 13. Какие методы входят в агрохимический анализ?
  • 14. Дайте характеристику эрозии почв.
  • 15. Для чего необходимо проводить полезащитное лесоразведение?

Все свойства почвы, относящиеся к категории физических, можно разделить на основные и функциональные. К первой группе относятся удельный и объемный вес, пластичность, твердость, пористость, связность, спелость и липкость, а ко второй – воздушные, водные и тепловые характеристики.

Водные свойства отражают способность грунта впитывать, пропускать и удерживать влагу, поступающую в виде осадков или поливной воды, а также переносить ее из глубинных слоев в поверхностные, к растениям. Влага способна оказывать существенное влияние на химические, физические, воздушные и тепловые качества почвы. Физические характеристики грунта, находясь в тесной связи с другими его свойствами, обусловлены процессом почвообразования, который, в свою очередь, изменяется в зависимости от основных и функциональных качеств.

Объемный и удельный вес

Объемным весом почвы принято называть единицу объема сухого грунта в его природном сложении. Для определения этого параметра проводится взвешивание образца почвы, имеющего ненарушенную структуру и определенный объем.

Удельный вес – единица веса твердой массы грунта без пор. Это выражение соотношения веса твердой фазы почвы заданного объема и веса воды, имеющего такой же объем и температуру 40 °C.

Пористость

Пористостью, или скважностью, называется общий объем пор между составляющими твердой фазы почвы, который выражается в соотношении объема грунта к объему пор.

Величина пор, их сочетаемость и форма могут быть разнообразными, поскольку они образуются в результате случайного взаимодействия полидисперсных частиц. Промежутки, образующиеся между ними, обычно различаются также качеством поверхности. Их основные характеристики – форма и размер – способны изменяться с течением времени вследствие биологических, механических и физических процессов, происходящих в толще грунта. При этом одни поры могут вовсе исчезнуть, а другие – только сформироваться. Нередко в почве происходит так называемая уплотненная укладка, которая приводит к заполнению пор агрегатами, имеющими тот же диаметр.

Пластичность

Пластичность почвы – это ее способность при создании определенного влажностного уровня изменять первоначальную форму и сохранять новую, заданную. Такое качество она получает за счет формирования гидратированных уплотненных оболочек, которые образуются вокруг мелких ее частиц. Максимальными показателями пластичности обладает жирная глина, в структуру которой входят тончайшие чешуеобразные частицы, расположенные слоями – одна поверх другой.

Липкость

Липкость – такое свойство почвы, при котором она, находясь во влажном состоянии, прилипает к поверхности соприкасающихся с ней предметов. Показатели этого параметра обусловлены главным образом составом почвы и уровнем ее влажности. Липкость способна проявляться при влажности от 40 до 60% в бесструктурных грунтах и от 60 до 70% – в структурных.

При условии дальнейшего увлажнения она переходит в разряд текучести, а при высушивании материала такое свойство может быть полностью утраченным. Таким образом, можно говорить о том, что липкость – это качество почвы, которое зависит от уровня влажности в соответствующий момент времени.

Связность

Связность – термин, которым обозначено свойство почвы, выражающееся в соединении составляющих ее частиц. Для измерения данной величины используются показатели силы, которая способствует удерживанию и сцеплению частиц друг с другом. Связность зависит от когезии, адсорбции, степени увлажненности грунта и его цементирующей способности, которая, в свою очередь, обусловлена структурой и составом почвы.

Твердость

Твердостью, или плотностью, считается степень сопротивления почвы действию твердого предмета. На основании данного параметра различают почвы следующих видов:

– рыхлые (частицы грунта легко соскальзывают с поверхности воздействующего предмета);
– рыхловатые (обладает несколько меньшей сыпучестью);
– уплотненные (степень сопротивления такого грунта предмету воздействия можно назвать удовлетворительной);
– твердые (частицы грунта прилипают к поверхности действующего предмета, а стенки среза остаются плотными);
– очень твердые (не поддается разрезанию лопатой или ножом).

Структура почвенных горизонтов неоднородна. В ней даже невооруженным глазом легко можно рассмотреть различные ячейки, полости, трещины и поры. Такие составляющие грунта различаются величиной и формой. Одна из классификаций почв основана именно на форме и величине пустот и пор. Таким образом выделяют следующие виды грунтов:

– тонкопористые (диаметр пор не превышает 1 мм; являются признаком лессов и сформировавшихся из них грунтов);
– пористые (диаметр пор составляет от 1 до 3 мм; считаются признаком лессовых пород, сероземов и дерново-подзолистых грунтов);
– губчатые (диаметр пор достигает 5 мм; встречаются в подзолистых горизонтах);
– дырчатые, или ноздреватые (диаметр пор равен 5–10 мм; являются характерным признаком сероземов; образуются вследствие жизнедеятельности землероющих животных);
– ячеистые (диаметр пор составляет не более 10 мм; такие почвы, располагаются в тропических и субтропических зонах);
– трубчатые (диаметр пор превышает 10 мм; образование таких почв обусловлено жизнедеятельностью крупных землероющих животных).

По внешнему виду полости, составляющие структуру почвы того или иного вида, могут быть различными:

– щелевато-вертикальными (пустоты диаметром более 10 мм; располагаются главным образом в столбчатых горизонтах солонцеватых грунтов);
– трещиноватыми (полости имеют вид трещин величиной от 3 до 10 мм; встречаются в столбчатых и призматических почвах);
– тонкотрещиноватыми (полости размером менее 3 мм, имеют вид трещинок, направленных по вертикальным линиям).

Почвенная корка и плужная подошва

Говоря о физических качествах грунта, следует назвать также такие явления, как почвенная корка и плужная подошва. Первая часто образуется после интенсивного увлажнения на поверхности участков с глинистой и суглинистой почвой. Такая корка представляет собой заплывшую прослойку пахотного среза грунта, испещренную вертикально располагающимися трещинами. Она способствует выходу значительного количества влаги из пахотного слоя грунта, что приводит к снижению показателей всхожести высеянных растений, замедлению их роста и развития. В целом, почвенная корка снижает урожайность культур.

Плужная, или пахотная, подошва – это участок, который формируется на уровне подпахотного горизонта на глинистых и суглинистых грунтах. Данное явление также отрицательно влияет на показатели урожайности выращиваемых на подобных участках культур. Для устранения плужной подошвы рекомендуется изменять глубину копки или вспашки, а также проводить мероприятия по гипсованию щелочных почв либо известкованию – кислых.

Водные качества

Воду можно отнести к группе главных факторов, которые оказывают существенное влияние на характер формирования почв. Кроме того, достаточный уровень влажности является важным условием их плодородия. Особое значение вода приобретает как составляющая мелиоративных мероприятий.

Как известно, низкий уровень влажности почвы обусловливает невысокую урожайность выращиваемых на них культур. У культивируемых растений она будет удовлетворительной только при условии, если удастся добиться баланса между содержанием в грунте воды и питательных компонентов, а также создать благоприятный для них температурный и воздушный режим.

Уровень влажности почвы зависит не только от климатических условий того или иного района. В значительной степени он обусловлен также таким качеством грунта, как влагоудерживающая способность. Добиться достаточно высоких показателей качества почвы можно, используя различные методы ее окультуривания. Важным считается насыщение ее не только минеральными и органическими вещества, но и влагой. Для этого следует улучшить такие параметры грунта, как влажность, влагоемкость и водопроницаемость.

Влажность

Уровень влажности в почве может изменяться в пределах от переувлажнения до полного иссушения. Под данным термином следует понимать определенное количество воды, которое отмечается в толще грунта в данный момент времени. Выражается уровень влажности в процентах относительно сухого почвенного комка.

В том случае, если известна степень влажности почвы, установить объем запаса влаги не составит труда. Известно, что на одном участке грунт может иметь разный уровень влажности, что зависит от глубины залегания почвенного слоя. Кроме того, данный показатель обусловлен водонепроницаемостью, капиллярностью, влагоемкостью и прочими факторами, оказывающими влияние на увлажненность.

Регулировать уровень влажности почвы можно с помощью специальных агротехнических методов. При их использовании следует обязательно учитывать скорость изменения степени увлажненности грунта, которая варьируется при переходе от одного слоя к другому.

Существуют также понятия абсолютной и относительной влажности грунта. В первом случае подразумевается количество влаги в почве на том или ином участке в конкретный момент времени. Оно выражается в процентах от объема или веса грунта. А относительная влажность – это показатель увлажненности, зависящий от пористости почвы.

Влагоемкость

Влагоемкость, или влагоудержание, – это свойство грунта, проявляющееся в способности сохранять и поглощать максимальный объем влаги. Данный параметр обусловлен уровнем влажности, температурой почвы, ее структурой, составом и качеством окультуренности. При этом влагоемкость и температура грунта и среды находятся в обратной зависимости. Чем выше последняя, тем ниже уровень влагоемкости. Исключением являются лишь богатые перегноем грунты.

Показатели влагоемкости грунтов, находящихся на разных уровнях, различны. Существует несколько видов влагоемкости:

– максимальная (адсорбционная);
– полная;
– капиллярная;
– минимальная полевая;
– предельная полевая.

Все они преобразовываются в зависимости от характера развития почвенного слоя в естественных условиях и особенностей проводимых мероприятий по его окультуриванию. Было замечено, что однократно выполненное рыхление грунта способно значительно повысить его водные характеристики.

Улучшению водных свойств способствует также обогащение почвы органическими и минеральными удобрениями (торф, навоз, компост), которые отличаются высокими качествами влагоемкости. Кроме того, в этих же целях нередко применяются влагоудерживающие вещества, характеризующиеся высокой степенью пористости. К ним относятся керамзит, перлит и вермикулит.

Теплоемкость

Помимо естественной тепловой энергии, исходящей от солнца, почва получает тепло, источником которого являются вещества, вступающие в физико-химическую, экзотермическую или биохимическую реакцию. Однако это не вызывают изменения температурного уровня грунта.

Как известно, в летний зной происходит значительное повышение температуры предварительно увлажненной почвы. При этом образуется тепловая энергия, получившая наименование «теплота смачивания». Особенно ярко подобное явление выражено на участках с почвой, содержащей большое количество минеральных и органических компонентов.

Незначительному повышению температуры может способствовать так называемая внутренняя теплота планеты. Кроме того, существует такое явление, как скрытая теплота. Она образуется вследствие процессов конденсации, замерзания и кристаллизации воды.

Все почвы условно можно разделить на две группы – теплые и холодные. Величина температурного параметра зависит от ряда факторов, наиболее значимыми среди которых являются состав грунта, количество содержащегося в нем перегноя и уровень влажности. Причем чем выше последний параметр, тем ниже показатели теплоемкости песчаных почв и тем выше – глинистых и торфяных, которые считаются холодными.

Создание оптимальной температуры почвы является одним из главных условий успешного выращивания растительных культур. Температурный режим в толще грунта может быть как положительным (при этом в почве сохраняется больше тепловой энергии, чем выходит), так и отрицательным (отдается больше тепловой энергии, чем удерживается). В настоящее время разработаны способы суточного, сезонного, годичного и даже многолетнего регулирования температуры почвы. Среди таких методик известны не только гидромелиоративные, но и агротехнические, лесо– и агромелиоративные.

Выращивание растений на том или ином участке способствует эффективной регуляции температурного режима почвенного покрова. При этом наблюдается уменьшение годового теплооборота. Создание благоприятной для культур воздушно-тепловой среды возможно, например, при размещении посевных участков у водоемов либо на грядах и гребнях, где обычно отмечается более высокая температура, чем в низинах.

Теплопроводность

Еще одной важной характеристикой почв является их теплопроводность. Данный термин означает способность грунта проводить тепловую энергию.

Было замечено, что сухая почва отличается меньшей теплопроводностью по сравнению с увлажненной. Такое явление можно объяснить значительным тепловым контактом, происходящим между частичками почвенного комка, разделенными водной пленкой.

Плодородие

Плодородие – это способность грунта снабжать растения необходимыми для их нормального роста и развития питательными веществами, а также водой, теплом и воздухом. Такое его качество напрямую связано с характером процесса почвообразования.

Показатели плодородия почвы обусловлены рядом природных и социально-экономических факторов. Действительно, урожайность зависит не только от условий естественной среды, но также от проводимых мелиоративных и агротехнических мероприятий. Известно, например, что разницу в показателях урожайности на плодородных и неплодородных почвах можно сделать минимальной, если регулярно вносить в бедные грунты органические и минеральные удобрения. Однако следует заметить, что результат возрастает не только вследствие повышения уровня плодородия почвы за счет подкормки. Дело в том, что плодородие можно соотнести со сложной системой, состоящей из нескольких компонентов. В данном случае таковыми являются структура и состав грунта, его физические, химические и биологические качества. Степень плодородия обусловлена также мероприятиями, которые регулируют содержание в почве микроэлементов, азотистых и зольных веществ, а также позволяют оптимизировать воздушный, температурный и водный режимы.

Ученые утверждают, что все почвы являются потенциально плодородными. К факторам, оказывающим влияние на уровень скрытого плодородия, относятся наличие в грунте тех или иных питательных веществ, их количество и сформировавшиеся в данный период времени водные, воздушные, химические, физические и биологические условия. Для повышения урожайности культур и уровня плодородия необходимо учитывать и улучшать параметры всех указанных выше характеристик почвы.

Величина потенциального плодородия грунта формируется в процессе почвообразования и является выражением его состояния в конкретный момент времени. Однако нужно отметить, что не во всех случаях качество плодородия повышается одновременно с процессами природного и искусственного окультуривания. Для достижения ожидаемого результата при проведении агротехнических мероприятий следует обязательно учитывать, анализировать и прогнозировать динамику роста показателей потенциального плодородия. Это позволит активизировать скрытые возможности почвы при освоении.

Плодородие грунта относится к числу непостоянных величин, которые изменяются вместе с трансформацией условий. Его показатели зависят от методов использования почвенного горизонта, воздушного, водного и температурного режимов, характеристик культивируемых растений, состава используемых для обогащения удобрений и т. д.

Более того, плодородие – это характеристика почвы, которая не относится к категории неисчерпаемых ресурсов. При неправильном использовании грунт быстро истощается. Чтобы предотвратить это, важно своевременно проводить специальные мероприятия по его обогащению. При подготовке статьи использовалась литература: Хворостухина С.А. Как повысить плодородие почвы.



Плодородие - это главное, основное свойство почвы. Оно в свою очередь зависит от ряда других свойств, которые мы опишем ниже.

Поглотительная способность почвы. Пищу растение берёт своими корнями из почвенных растворов. Но чтобы оно могло забирать необходимые ему вещества, растворы должны быть слабы, то есть на большое количество воды должно быть растворено весьма малое количество солей (не больше 2-3 граммов питательных солей на 1 литр воды). Правда, солей может оказаться слишком мало, и тогда растение голодает, но оно гибнет и в том случае, когда водный раствор излишне крепок. Из такого концентрированного водного раствора корни растений не в состоянии впитывать солей, и растение гибнет, как оно погибло бы от голода.

Реакция почвы. Если в почве много кислот (например, кислого гумуса) или щелочей (например соды), то культурное растение гибнет. Большинство культурных растений любит, чтобы почвенный раствор не был ни кислым, ни щелочным; он должен быть средним, нейтральным.

Скважность , или порозность , почвы. Если в почве будет достаточное количество питательных веществ, но в ней не хватает воды или воздуха, растение гибнет. Поэтому приходится заботиться о том, чтобы наряду с пищей в почве всегда были вода и воздух, которые размещаются в почвенных пустотах, или скважинах. Скважины почвы занимают весьма большой объём, примерно половину всего объёма почвы. Так, если вырезать 1 литр почвы без уплотнения её, то пустоты составят в ней около 500 кубических сантиметров, а остальной объём будет занят твёрдой частью почвы. В рыхлых суглинках и глинистых почвах количество скважин на 1 литр почвы может достигать 600 и даже 700 кубических сантиметров, в торфяных почвах - 800 кубических сантиметров, а в песчаных почвах скважность меньше - примерно 400-450 кубических сантиметров на 1 литр почвы.

Водопроницаемость почвы. Выпадая на поверхность почвы в виде осадков, вода под влиянием силы тяжести просачивается в почву по крупным скважинами рассасывается по тонким скважинам, или капиллярам, окружая сплошным слоем почвенные частички.

В песках поры крупные, и вода проникает по ним легко и быстро. Наоборот, в глинистые почвы с чрезвычайно малыми отверстиями она впитывается с трудом - в десятки и сотни раз медленнее, нежели в пески.

Водопроницаемость структурной почвы. Однако сказанное о глинистых почвах справедливо лишь в отношении почв бесструктурных. Если же глинистая почва богата известью и перегноем, то отдельные мелкие частички в ней свёртываются, склеиваются в пористые зёрнышки и комочки. Эти зёрнышки и комочки, при наличии извести и гумуса, прочны и с трудом размываются в воде. В почве между ними образуются поры средней величины, как в песке, и несколько крупнее. Такая (структурная) глинистая почва обладает хорошей водопроницаемостью, несмотря на то, что она состоит из мельчайших частиц.

Cостав почвы

Состав и свойства почвы

Cостав почвы

Почва - это поверхностный слой земной коры, который образуется и развивается в результате взаимодействий, живых микроорганизмов, горных пород и является самостоятельной экосистемой.

Важнейшим свойством почвы является плодородие почвы, т.е. способность обеспечить рост и развитие растений. Это свойство представляет исключительную ценность для жизни человека и других организмов. Почва является составной частью биосферы и энергии в природе и поддерживает газовый состав атмосферы.

Состав и свойства почвы

Почва состоит из твердой, жидкой, газообразной и живой частей. Соотношение их неодинаково не только в разных почв, но в различных горизонтах одной и той же почвы. Закономерно уменьшение содержания органических веществ и живых организмов то верхних горизонтов почвы к нижним и увеличение интенсивности преобразования компонентов материнской породы от нижних и горизонтов к верхним. В твердой части преобладают минеральные вещества. Первичные минералы (кварц, полевые шпаты, роговые обманки, слюды и др.) вместо с обломками горных пород образуют крупные фракции; вторичные минералы (гидрослюды, монтмориллонит, каолинит и др.), формирующиеся в процессе выветривания, - более тонкие. Рыхлость сложения почвы обусловливают состава ее твердой части, включающей частицы разного размера (от коллоидов почвы, измеряемых сотыми долями мк, до обломков диаметром в несколько десятков см). Основную массу почв составляет обычно мелкозем - частицы менее 1 мм

Твердые частицы в естественном залегании заполняются не весь объем почвенной массы, а лишь некоторую его часть; др. часть составляют поры - промежутки различного размера и формы между частицами и их агрегатами. Суммарный объем пор называется пористостью почвы. Для большинства минеральных почв эта величина варьирует в пределах от 40 до 60%. В органогенных (торфяных) почвах она возрастает до 90%, в заболоченных, оглеенных, минеральных - уменьшается до 27%. От пористости зависят водные составы почвы (водопроницаемость, водоподъемная способность, влагоемкость) и плотность почвы. В порах находятся почвенный раствор и почвенный воздух. Соотношение их непрерывность меняется вследствие поступления в почву атмосферу осадков, иногда оросительных и грунтовых вод, а также расхода влаги - почвенного стока, испарения (отсасывание корнями растений) и др.

Освобождающееся от воды поровое пространство заполняется воздухом. Этими явлениями определяется воздушный и почвенный режим почвы. Чем больше поры заполнены влагой, тем затруднительнее газовый обмен (особенно О2 и СО2) между почвой и атмосферой, тем медленнее протекают в почвенной массе процессы окисления и быстрее - процессы восстановления. В порах также обитают почвенные микроорганизмы. Плотность почвы (или объемная масса) в ненарушенном сложении определяется пористостью и средней плотностью твердой фазы. Плотность минеральных почв от 1 до 1,6 г/см3, реже 1,8г/см3, заболоченных оглеенных - до 2 г/см3, торфяных - 0,1-0,2 г/см2.

С дисперсностью сопряжена большая суммарная поверхность твердых частиц: 3-5 м2/г у песчаных почв, 30-150 м2/г у супесчаных, до 300-400 м2/г у глинистых. Благодаря этому почвенные частицы, особенно коллоидная и илистая фракции, обладают поверхностной энергией, которая проявляется в поглотительной способности почвы и буферности почвы.

Минеральный состав твердой части почвы во многом определяет ее плодородие. Органических частиц (растительные остатки) содержится немного, и только торфяные почвы почти полностью состоят из них. В состав минеральных веществ входят: Si, Al, Fe, K, N, Mg, Ca, P, S; значительно меньше содержится микроэлементов: Сu, Mo, I, B, F, Pb и др. Подавляющее большинство элементов находится в окисленной форме. Во многих почвах, преимущественно в почвах недостаточно увлажняемых территорий, содержится значительное количество СаСО3 (особенно если почвы образовались на карбонатной породе), в почвах засушливых областей - СаSO4 и др. более легко растворимые соли; почвы влажных тропических областей обогащены Fe и Al. Одна реакция этих общих закономерностей зависит от состава почвообразующих пород, возраста почвы, особенностей рельефа, климата и т.д. Например, на основных изверженных породах формируются почвы более богатые Al, Fe, щелочноземельными и щелочными металлами, а на породах кислого состава - Si. Во влажны тропиках на молодой коре выветривания почв значительно беднее окисями железа и алюминия, чем на более древних, и по содержанию сходны с почвой умеренных широт. На крутых склонах, где эрозионные процессы весьма активны, состав твердой части почвы незначительно отличается от состава почвообразующих пород. В засоленных почвах содержится много хлоридов и сульфатов (реже нитратов и бикарбонатов) кальция, магния, что связано с исходной засоленностью материнской породы, с поступлением этих солей из грунтовых вод или в результате почвообразования.

В состав твердой части почвы входит органическое вещество, основная (80 - 90%) часть которого представлена сложным комплектом из гумусовых веществ, или гумуса. Органическое вещество состоит также из соединений растительного, животного и микробного происхождения, содержащих клетчатку, лигнин, белки, сахара, смолы, жиры, дубильные вещества и т.д. и промежуточные продукты их разложения. При разложении органических веществ в почве содержащийся в них азот переходит в формы, доступные растениям. В естественных условиях они являются основным источником азотного питания растительных организмов. Многие органические вещества участвуют в создании органо-минеральных структурных отдельностей (комочков). Возникающая теоретическая структура почвы во многом определяет ее физические свойства, а также водный, воздушный и тепловой режимы. Органо - минеральные соединения представлены солями, глинисто - гумусовыми комплексами, комплексными и внутрикомплексными (хелаты) соединениями гумусовых кислот с рядом элементов (в их числе Al и Fe). Именно в этих формах последние перемещаются в почву.

Жидкая часть, т.е. почвенный раствор, - активный компонент почвы, осуществляющий перенос веществ внутри нее, вынос из почвы и снабжение растений водой и растворенными элементами питания. Обычно содержит ионы, молекулы, коллоиды и более крупные частицы, превращаясь иногда в суспензию.

Газовая часть или почвенный воздух, заполняет поры, не занятые водой. Количество и состав почвенного воздуха, в который входят N2, O2, CO2, летучие органические соединения и пр., постоянны и определяются характером множества протекающих в почве химических, биохимических процессов. Например количество СО2 в почвенном воздухе существенно меняется в годовом и суточном циклах вследствие различной интенсивности выделения газа микроорганизмами и корнями растений. Газообмен между почвенным воздухом и атмосферой происходит преимущественно в результате диффузии СО2 из почвы в атмосферу и О2 в противоположном направлении.

Живая часть почвы состоит из почвенных микроорганизмов (бактерии, грибы, актиномицеты, водоросли и др.) и представлений многих групп беспозвоночных животных - простейших, червей, моллюсков, насекомых и их роющих позвоночных и др. Активная роль живых организмов в формировании почвы определяет принадлежность ее к биокосным природным телам - важнейшим компонентам биосферы.

Химический состав почвы оказывает влияние на состояние здоровья человека через воду, растения и животных. Недостаток или избыток определенных химических элементов в почве бывает столь велик, что приводит к нарушению обмена веществ, вызывает или способствует развитию серьезных заболеваний. Так, широко распространенное заболевание эндемический (местный) зоб связано с недостатком йода в почве. Малое количество кальция при избытке стронция служит причиной уровской болезни. Недостаток фтора приводит к кариесу зубов. При высоком содержании фтора (свыше 1,2 мг/л) нередко возникают заболевания костной системы (флюароз).

Почва представляет собой сложную природную систему, где под влиянием живых организмов и других факторов происходят образование и разрушение сложных органических соединений. Минеральные вещества извлекаются растениями из почвы, входят в состав их собственных органических соединений, затем включаются в органические вещества тела сначала растительноядных, затем насекомоядных, хищных животных. После гибели растений и животных их органические соединения поступают в почву. Под воздействием микроорганизмов в результате сложных многоступенчатых процессов разложения эти соединения переходят в формы, доступные для усвоения растениями. Они частично входят в состав органических веществ, задерживаются в почве или удаляются с фильтрующимися и сточными водами. В результате происходит закономерных круговорот химических элементов в системе "почва - растения - (животные - микроорганизмы) - почва". Этот круговорот В.Р. Вильямс назвал малым, или биологическим. Благодаря малому круговороту веществ в почве постоянно поддерживается плодородие. В искусственных агроценозах такой круговорот нарушен, так как человек изымает значительную часть сельскохозяйственной продукции, используя ее для своих нужд. Из - за неучастия этой части продукции в круговороте почва становится малоплодородной. Чтобы избежать этого и повысить плодородие почвы в искусственных агроценозах, человек вносит органические и минеральные удобрения. Применяя необходимые севообороты, тщательно обрабатывая и удобряя почву, человек повышает ее плодородие столь значительно, что большинство современных обрабатываемых почв следует считать искусственными, созданными при участии человека. Таким образом, в одних случаях воздействие человека на почвы приводит к повышению их плодородия, в других - к ухудшению, деградации и гибели.

Типы почв по механическому составу

В почвоведении принята классификация почв по механическому составу разработана Качинским, по которой все почвы подразделяются в зависимости от содержания в них физической глины, т.е. частиц, диаметр которых менее 0,01мм. Для каждого типа почвообразования нормы содержания физической глины не однократны.

Классификация почв по механическому составу. (Н.А. Качинский, 1965)

Механический состав почвы является важной характеристикой, необходимой для определения ценности почвы, ее плодородия, способ механические свойства почвы: влажность, водопроницаемость, порозность, воздушный и тепловой режим и др. В полевых условиях определение механического состава производится по степени пластичности - наощупь. При известном навыке почвы можно достаточно четко разделить на глинистые, суглинистые, песчаные:

Песчаные почвы - бесструктурные, не обладают связностью, сыпучи, при большом увлажнении можно скатать в шарик.

Супесчаные почвы - в сухом состоянии сыпучи, бесструктурные, во влажном состоянии легко скатываются в шар, но "шнура" или "колбаски" не образуют.

Суглинистые почвы - в сухом состоянии легко втираются в кожу, во влажном состоянии пластичными пластичны и легко раскатываются в "шнур" или "колбаску". Чем тоньше "шнур" или "колбаска", тем данная почва ближе к глине.

Глинистые - в сухом состоянии при растирании на ладони дают тонкий однородный порошок (пудру), хорошо втираются в кожу, во влажном состоянии раскатываются в длинный тонкий "шнур", легко сворачиваемый в кольцо без трещин.

Окончательное название почвы по механическому составу производится в лаборатории при помощи специального анализа, и на основании этого дается название почвы. Общий анализ почвы по механическому составу дается по данным механического анализа верхнего горизонта (0-25см). Например, чернозем южный глинистый.

Сложение почвы. Под сложением почвы понимают внешнее выражение степени и характера ее плотности. Сложение оказывает большое влияние на сопротивление почвы почвообрабатывающим орудием, но ее водопроницаемость и в значительной степени на глубину проникновения в нее корней растений.

Порозность почвы. Почвенные частички и структурные элементы, входящие в состав почвы, прилегают друг к другу не всеми своими плоскостями, а лишь отдельными точками или гранями, вследствие чего сама почва приобретает характер пористого тела, пронизанного целой системой трещин, пор ячеек, пустот. Общий объем всех воздушных пор, полостей, трещин и пр. в определенном объеме почвы называют порозностью или скважностью почвы. Суммарный объем почвенных пор составляет от 25 до 60% объема почвы.

На порозность почвы большое влияние оказывает, прежде всего, структурное строение почвы: чем почвы структурнее, тем общая порозность больше (поскольку, помимо заключенных в комках пор, эти почвы имеют промежутки, находящиеся между структурными отдельностями). Всякое разрушение почвенной структуры, могущее произойти в результате воздействия на почву природных факторов или вследствие неправильной обработки почв, ведет за собой уменьшение общей порозности почвы. Заметное влияние на порозность почв оказывает также органическое вещество почв: чем органического вещества больше, тем больше порозности (так, например, порозность песка около 30%, а торфа - около 85%). Порозность заметно меняется в зависимости от глубины почвенного слоя в верхних слоях она больше, в нижних - меньше. Объясняется это большим содержанием гумуса и лучшей структурой верхних горизонтов, большим воздействием на верхние слои почвы корней растений и роющих животных, а также меньшим давлением вышележащих слоев.

Размеры почвенных полостей различны, начиная от тончайших, так называемых капилляров, и кончая порами с диаметром 10 мм и крупнее. В связи с этим, помимо общей скважности, различают еще капиллярную и некапиллярную скважность почвы. Во всякой почве всегда есть оба вида скважности, причем преобладание того или иного вида зависит от механического и структурного состава почв.

Каждый вид скважности имеет различное значение в почвообразовательных процессах: капиллярная порозность, обычно заполненная водой, затрудняет свободный доступ воздуха в почву и продвижение атмосферной влаги из верхних горизонтов в нижние. Наличие же некапиллярной скважности устраняет эти нежелательные явления, создавая благоприятные условия как для почвообразовательных процессов, так и для развития растений.

Список использованной литературы

1. Атлас природных условий и естественных ресурсов Украинской ССР, М. 1978 г.

2. Карпачевский Л.О. Зеркало ландшафта. М., Мысль, 1983 г.

3. Ковда В.А. Основные учения о почвах. КН. 1-2, М., 1973 г.

4. Почвоведение (под ред. Ковды Б.Г., Розанова) М., Высшая школа. 1988 г.

5. Фридланд В.М. Структура почвенного покрова. М., 1972 г.