Из какого типа резины. Из чего делают автомобильную резину? Источники резины и краткий экскурс в историю

В машиностроении часто используется резина - слож­ная смесь, в которой основным компонентом является каучук. Резина обладает высокой эластичностью, кото­рая сочетается с рядом других важнейших технических свойств: высоким сопротивлением разрыву и истиранию, газо- и водонепроницаемостью, химической стойкостью, высокими электроизоляционными свойствами и малым удельным весом. К недостаткам резины относятся ее не­высокая теплостойкость и малая стойкость к действию минеральных масел (за исключением специальной маслостойкой резины).

Применение резины . Резиновые изделия находят са­мое широкое применение во всех отраслях народного хозяйства. Ассортимент резиновых изделий исчисляется в настоящее время десятками тысяч наименований. Основное применение резина находит в производстве шин.

Кроме шин, в автомобиле насчитывается около 200 самых различных резиновых деталей: шланги, ремни, прокладки, втулки, муфты, буфера, мембраны, манжеты и т. д.

Резина обладает высокими электроизоляционными свойствами, поэтому ее широко применяют для изоля­ции кабелей, проводов, магнето, защитных средств - перчаток, галош, ковриков.

Состав резины. В состав резины входят каучук, реге­нерат, вулканизирующие вещества, ускорители вулкани­зации, наполнители, мягчители, противостарители, кра­сители. Каучук натуральный и синтетический является основным сырьем для получения резиновых изделий. В настоящее время резиновые материалы преимуществен­но производятся из синтетического каучука, который до­бывается из этилового спирта, нефти, природного газа и других веществ.

Регенерат - пластичный материал, получаемый пу­тем переработки старых резиновых изделий и отходов резинового производства. Применение регенерата умень­шает содержание каучука в резиновой смеси, снижает себестоимость резиновых изделий и несколько повыша­ет их пластичность.

Основным вулканизирующим веществом является се­ра. Изменяя количество серы в составе резиновых сме­сей, можно получить резину, обладающую различными степенями эластичности. Процесс химического соедине­ния каучука с серой при нагревании называется вулка­низацией . При получении эластичных резин сера вводит­ся в количестве 1-4% от массы каучука. Резина, со­держащая 25-35% серы, представляет собой твердый материал, называемый эбонитом. Для сокращения про­должительности и температуры вулканизации вводятся в небольшом количестве (0,5-2,5%) ускорители (каптакс, окись свинца и т. д.).

Наполнители бывают активные, неактивные и спе­циальные. К активным наполнителям (усилителям) от­носятся сажа, цинковые белила, каолин и другие веще­ства, повышающие механические свойства резины (проч­ность на разрыв и сопротивление истиранию). Сажа яв­ляется основным наполнителем для получения прочной резины, обладающей высоким сопротивлением истира­нию. К неактивным наполнителям относятся тальк, мел, инфузорная земля и др. Их вводят с целью увеличения объема и удешевления резины. К специальным напол­нителям относятся каолин и асбест, придающие резине химическую стойкость, и диатомит, повышающий элект­роизоляционные свойства резины.

Мягчители (пластификаторы) придают резиновой смеси мягкость, пластичность и облегчают ее обработку.

Противостарители - это вещества, предохраняющие резину от старения.

Основные виды резин . Армированной называют рези­ну, внутрь которой введены прокладки из металлической сетки или спирали с целью повышения прочности и гиб­кости, что особенно важно для таких изделий, как авто­мобильные шины, приводные ремни, ленты транспорте­ров, трубопроводы и т. д. При ее приготовлении в рези­новую смесь закладывают металлическую сетку, покры­тую слоем латуни и обмазанную клеем, и подвергают одновременному прессованию и вулканизации.

Пористые резины по характеру пор и способу полу­чения разделяются на губчатые - с крупными открытыми порами, однородные ячеистые - с закрытыми порами и микропористые. Способ их получения основан на способности каучука абсорбировать газы и на диффузии тазов через каучук. Пористая резина применяется при изготовлении амортизаторов, сидений, оконных прокла­док, протекторных слоев покрышек.

Твердая резина, или эбонит, имеет темно-коричневую или красную окраску, теплостойкость от 50 до 90°С, вы­держивает высокое пробивное напряжение (25- 60 кВ/мин).


Резина (от лат. resina - смола) (вулканизат), эластичный материал, образующийся в результате натурального и синтетических каучуков. Представляет собой сетчатый эластомер - продукт поперечного сшивания каучуков химическими связями.

Получение резины

Резину получают главным образом вулканизацией композиций (резиновых смесей), основу которых (обычно 20-60% по массе) составляют каучуки. Другие компоненты резиновых смесей - вулканизующие агенты, ускорители и активаторы вулканизации (см. ), противо-старители, (мягчители). В состав смесей могут также входить регенерат (пластичный продукт регенерации резины , способный к повторной вулканизации), замедлители , модификаторы, душистые вещества и другие ингредиенты, общее число которых может достигать 20 и более. Выбор каучука и состава определяется назначением, условиями эксплуатации и техническими требованиями к изделию, технологией производства, экономическими и другими соображениями (см. , ).

Технология производства изделий из резины включает каучука с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных тканей, корда и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением специального сборочного оборудования и вулканизацию изделий в аппаратах периодического (прессы, котлы, автоклавы, форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая резиновых смесей, благодаря которой им придается форма будущего изделия, закрепляемая в результате вулканизации. Широко применяют формование в вулканизационном прессе и , при которых формование и вулканизацию изделий совмещают в одной операции. Перспективны использование порошкообразных каучуков и композиций и получение литьевых резин методами жидкого формования из композиций на основе . При смесей, содержащих 30-50% по массе S в расчете на каучук, получают .

Свойства резины

Резину можно рассматривать как сшитую , в которой каучук составляет дисперсионную среду, а - дисперсную фазу. Важнейшее свойство резины - высокая эластичность, т.е. способность к большим обратимым в широком интервале температур (см. ).

Резина сочетает в себе свойства (упругость, стабильность формы), (аморфность, высокая деформируемость при малом объемном сжатии) и (повышение упругости вулканизационных сеток с ростом температуры, энтропийная природа упругости).

Резина - сравнительно мягкий, практически несжимаемый материал. Комплекс ее свойств определяется в первую очередь типом каучука (см. табл. 1); cвойства могут существенно изменяться при комбинировании каучуков различных типов или их модификации.

Модуль упругости резин различных типов при малых деформациях составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэффициент Пауссона близок к 0,5. Упругие свойства резины нелинейны и носят резко выраженный релаксационный характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности деформаций и температуры. Деформация обратимого растяжения резины может достигать 500-1000%.

Нижний предел температурного диапазона высокоэластичности резины обусловлен главным образом температурой стеклования каучуков, а для кристаллизующихся каучуков зависит также от температуры и скорости . Верхний температурный предел эксплуатации резины связан с термической стойкостью каучуков и поперечных химических связей, образующихся при вулканизации. Ненаполненные резины на основе некристаллизующихся каучуков имеют низкую . Применение активных наполнителей (высокодисперсных , SiO 2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резины из кристаллизующихся каучуков. резины определяется содержанием в ней наполнителей и пластификаторов, а также степенью вулканизации. Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом могут быть приближенно вычислены (при объемном наполнении менее 30%) теплофизические характеристики резины : коэффициент термического расширения, удельная объемная теплоемкость, коэффициент теплопроводности. Циклическое деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизационные свойства. Резины характеризуются также высокими фрикционными свойствами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляционными свойствами. Они диамагнетики и хорошие диэлектрики, хотя могут быть получены токопроводящие и магнитные резины .

Резины незначительно поглощают воду и ограниченно набухают в органических растворителях. Степень набухания определяется разницей параметров растворимости каучука и растворителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного набухания обычно используют для определения степени поперечного сшивания). Известны резины , характеризующиеся масло-, бензо-, водо-, паро- и термостойкостью, стойкостью к действию химически агрессивных сред, озона, света, ионизирующих излучений. При длительном хранении и эксплуатации резины подвергаются старению и утомлению, приводящим к ухудшению их механических свойств, снижению прочности и разрушению. Срок службы резины в зависимости от условий эксплуатации от нескольких дней до нескольких десятков лет.

Классификация резин

По назначению различают следующие основные группы резин : общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию химически агрессивных сред, диэлектрические, электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищевого и медицинского назначения, для условий тропического климата и др. (табл. 2); получают также пористые, или губчатые (см. ), цветные и прозрачные резины .

Применение резины

Резины широко используют в технике, сельском хозяйстве, быту, медицине, строительстве, спорте. Ассортимент резиновых изделий насчитывает более 60 тыс. наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца и др., кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные ткани, герметики и др. Более половины объема вырабатываемой резины используется в производстве шин.

Эластичные материалы знакомы человеку с давних времен. Они тогда применялись преимущественно в бытовых целях. Сегодня без резины и каучука трудно представить развитие промышленности, транспорта и строительства и связи, повседневную жизнь людей.

Что появилось раньше

Еще до того, как Америку открыли европейцы, индейцы, жившие там, пользовались каучуком. Его получали из сока тропической гевеи . Высушенный сок коптили, получая непромокаемый и упругий материал. Он шел на изготовление емкостей для воды, игрушек, предметов культа. Из него делали примитивную обувь и одежду.

В середине XVIII века каучук путешественники привезли в Европу. Однако долго не могли найти способ его применения. За исключением стирающих карандаш ластиков. Считалось, что из-за его высыхания и затвердевания он не имеет перспектив практического применения. В следующем веке появились непромокаемые ткани, сумки и галоши, которые твердели в холодную погоду и становились мягкими в тепле.

Через сотню лет после появления каучука в Старом Свете был придуман способ, позволивший сделать эластичность этого материала устойчивой. Он получил название вулканизации . Его суть в смешивании сырого каучука с серой и дальнейшим разогревом этой смеси. Получившийся продукт стали называть резиной. Она начала широко использоваться в качестве уплотнителя и электроизолятора. В начале ХХ века в связи с ростом потребности в резине была решена проблема производства синтетических каучуков в промышленно развитых странах.

Куда идет латекс

Натуральный каучук добывают из каучуконосных деревьев , которые растут в тропических лесах или на специальных плантациях. Такое дерево начинает давать сок через семь лет. Для этого на нем ножом делается спиралевидное углубление, по которому в емкость попадает вытекающий сок белого цвета, называемый латексом. Спустя несколько часов набирается примерно полторы сотни граммов. После загустевания и высыхания образуются комочки натурального каучука. Такую процедуру можно проводить раз в два дня.

Всего в мире натуральный каучук достигает 40% в общем производстве и потреблении всех видов каучуков. Это примерно 9 млн. тонн .

Необработанный каучук растворяется в бензине, образуя каучуковый клей, и других органических растворителях. После вулканизации он только набухает, а не растворяется.

Кроме бензина он растворяется в бензоле, хлороформе, сероуглероде и других углеводородах. Он практически не растворяется и не набухает в спирте, воде и ацетоне.

Свыше половины натурального каучука идет на производство автошин. В странах Юго-Восточной Азии (Вьетнам, Индонезия, Малайзия и Таиланд) организовано крупномасштабное его производство.

Как делают резину

Оба эластичных материала неразрывно связаны. Резину получают из натурального или синтетического каучука в результате вулканизации. Добавляется наполнитель, которым чаще всего является сажа. Нагретый до 130-160 градусов каучук начинает взаимодействовать с серой. Во время этого технологического процесса молекулы каучука сшиваются в единую сетку с помощью атомов серы. Это резко повышает его эластичность и твердость, прочностные качества. Регулируется набухаемость и растворимость органическими растворителями.

Помимо серы для вулканизации применяются оксиды металлов, соединения аминного типа, убыстряющие процесс катализаторы, и другие химические компоненты. Они обеспечивают нужную пластичность, свойства против старения и другие эксплуатационные качества. В результате каучук превращается в резину. В зависимости от содержания серы образуется материал разной степени упругости. Самой мягкой получается резина с минимальным содержанием серы, а самой твердой та, в которой она составляет треть и более.

При изготовлении резины ей задаются определенные качества для производства изделий из нее:

  • Кислотостойкость.
  • устойчивость в агрессивных средах.
  • Маслобензостойкость.
  • устойчивость против высоких и низких температур.
  • Озоностойкость.
  • Электропроводимость и пр.

Резина широко применяется для изготовления шин для транспортных средств, различных шлангов и уплотнителей, лент транспортеров, бытовых, гигиенических и медицинских товаров.

В чем сходство и разница

Резина и каучук схожи, прежде всего, своей эластичностью и тем, что они могут перерабатываться. Их отличия существеннее.

Сырой каучук:

  1. Не пригоден для промышленного производства. В мире применяют не более 1% добываемого натурального каучука. В основном в виде резинового клея.
  2. У него низкая прочность, и высокая липучесть, которая сильно проявляется при высокой температуре. На морозе он твердеет и ломается. Полезные качества он приобретает только после вулканизации.
  3. При комнатной температуре начинается его старение, следствием которого становится потеря прочности и эластичности.
  4. Когда температура поднимается до 200 градусов, он разлагается с образованием низкомолекулярных углеводородов.
  5. Растворяется органическими растворителями типа бензина.
  6. Служит сырьем для производства резины.

Резина, полученная в результате вулканизации каучуков, служит для массового производства многих тысяч наименований различных изделий.

Из нее изготавливают:

  1. Шины для транспортных средств и авиационной техники.
  2. Разнообразные уплотнители, применяемые в промышленности и строительстве, различных видах техники.
  3. Электроизоляционные материалы.
  4. Приводные ремни, рукава для подачи жидкостей.
  5. Напольные покрытия и изолирующие пластины.
  6. Резиновую обувь и водоустойчивую одежду.
  7. Средства защиты от химического, радиационного и бактериологического воздействия (костюмы, перчатки, сапоги и пр.).
  8. Изделия медицинской техники и гигиены.
  9. Фурнитуру для одежды и пр.

), основу к-рых (обычно 20-60% по массе) составляют . Др. компоненты резиновых смесей-вулканизующие агенты, ускорители и (см. ), противо-старители, (). В состав смесей могут также входить регенерат (пластичный продукт резины, способный к повторной ), замедлители , модификаторы, порообра-зователи, душистые в-ва и др. ингредиенты, общее число к-рых может достигать 20 и более. Выбор и состава определяется назначением, условиями эксплуатации и техн. требованиями к изделию, технологией произ-ва, экономич. и др. соображениями (см. , ).

Технология произ-ва изделий из резины включает с ингредиентами в смесителях или на вальцах, изготовление полуфабрикатов (шприцеванных профилей, каландрованных листов, прорезиненных , и т.п.), резку и раскрой полуфабрикатов, сборку заготовок изделия сложной конструкции или конфигурации с применением спец. сборочного оборудования и изделий в аппаратах периодич. (прессы, котлы, форматоры-вулканизаторы и др.) или непрерывного действия (тоннельные, барабанные и др. вулканизаторы). При этом используется высокая , благодаря к-рой им придается форма будущего изделия, закрепляемая в результате . Широко применяют формование в вулканизац. прессе и , при к-рых формование и изделий совмещают в одной операции. Перспективны использование порошкообразных и композиций и получение литьевых резин методами жидкого формования из композиций на основе . При смесей, содержащих 30-50% по массе S в расчете на , получают .

Свойства. Резину можно рассматривать как сшитую , в к-рой составляет , а наполнители-дисперсную фазу. Важнейшее св-во резины- высокая эластичность, т. е. способность к большим обратимым в широком интервале т-р (см. ).

Р езина сочетает в себе св-ва (упругость, стабильность формы), (аморфность, высокая деформируемость при малом объемном сжатии) и (повышение упругости вулканизац. сеток с ростом т-ры, энтропийная природа упругости).

Р езина-сравнительно мягкий, практически несжимаемый материал. Комплекс ее св-в определяется в первую очередь типом (см. табл. 1); cв-вa могут существенно изме няться при комбинировании разл. типов или их модификации.

Модуль упругости резин разл. типов при малых составляет 1-10 МПа, что на 4-5 порядков ниже, чем для стали; коэф. Пауссона близок к 0,5. Упругие св-ва резины нелинейны и носят резко выраженный релаксац. характер: зависят от режима нагружения, величины, времени, скорости (или частоты), повторности и т-ры. обратимого растяжения резины может достигать 500-1000%.

Ниж. предел температурного диапазона высокоэластичности резины обусловлен гл. обр. т-рой стеклования , а для кристаллизующихся зависит также от т-ры и скорости . Верх. температурный предел эксплуатации резины связан с термич. стойкостью и поперечных хим. связей, образующихся при . Ненаполненные резины на основе некристаллизующихся имеют низкую . Применение активных (высокодисперсных , SiO 2 и др.) позволяет на порядок повысить прочностные характеристики резины и достичь уровня показателей резин из кристаллизующихся . резины определяется содержанием в ней и , а также степенью . Плотность резины рассчитывают как средневзвешенное по объему значение плотностей отдельных компонентов. Аналогичным образом м. б. приближенно вычислены (при объемном наполнении менее 30%) теплофиз. характеристики резин: коэф. термич. расширения, уд. объемная , коэф. . Циклич. деформирование резины сопровождается упругим гистерезисом, что обусловливает их хорошие амортизац. св-ва. Резины характеризуются также высокими фрикционными св-вами, износостойкостью, сопротивлением раздиру и утомлению, тепло- и звукоизоляц. св-вами. Они и хорошие , хотя м. б. получены токопроводящие и магнитные резины.

Р езины незначительно поглощают и ограниченно набу-хают в орг. р-рителях. Степень определяется разницей параметров р-римости и р-рителя (тем меньше, чем выше эта разность) и степенью поперечного сшивания (величину равновесного обычно используют для определения степени поперечного сшивания). Известны резины, характеризующиеся масло-, бензо-, водо-, паро- и , стойкостью к действию хим. агрессивных сред, света, . При длит. хранении и эксплуатации резины подвергаются старению и утомлению, приводящим к ухудшению их мех. св-в, снижению и разрушению. Срок службы резин в зависимости от условий эксплуатации от неск. дней до неск. десятков лет.

. По назначению различают след. осн. группы резин: общего назначения, теплостойкие, морозостойкие, маслобензостойкие, стойкие к действию хим. агрессивных сред, диэлектрич., электропроводящие, магнитные, огнестойкие, радиационностойкие, вакуумные, фрикционные, пищ. и мед. назначения, для условий тропич. климата и др. (табл. 2); получают также пористые, или губчатые (см. ), цветные и прозрачные резины.

Применение. Резины широко используют в технике, с. х-ве, быту, медицине, стр-ве, спорте. Ассортимент насчитывает более 60 тыс. наименований. Среди них: шины, транспортные ленты, приводные ремни, рукава, амортизаторы, уплотнители, сальники, манжеты, кольца и др., кабельные изделия, обувь, ковры, трубки, покрытия и облицовочные материалы, прорезиненные, т. 3, М., 1977, с. 313-25; Кошелев Ф.Ф., Кор-нев А.Е., Буканов А.М., Общая технология резины, 4 изд., М., 1978; Догадкин Б. А., Донцов А.А., Шершнев В.А., 2 изд., М., 1981; Федюкин Д.Л., Махлис Ф.А., Технические и технологические свойства резин, М., 1985; Применение резиновых технических изделий в народном хозяйстве. Справочное пособие, М., 1986; Зуев Ю. С., Дегтева Т. Г., Стойкость в эксплуатационных условиях, М., 1986; Лепетов В. А., Юрцев Л. Н., Расчеты и конструирование , 3 изд., Л., 1987. Ф.Е. Куперман.

*информация размещена в ознакомительных целях, чтобы поблагодарить нас, поделитесь ссылкой на страницу с друзьями. Вы можете прислать интересный нашим читателям материал. Мы будем рады ответить на все ваши вопросы и предложения, а также услышать критику и пожелания по адресу [email protected]

Трудно представить сегодняшнюю насыщенную и технологичную жизнь человека, без такого материала как резина. А ведь еще несколько веков назад о резиновых изделиях высокого качества можно было только мечтать. Теперь же этот материал незаменим в медицине, промышленности, технике, бытовой повседневной жизни.

Появление резины в жизни людей случилось довольно внезапно, после открытия Колумбом Америки. Свое начало она берет от каучука, который производился из дерева гевея. Открыв новый материк, путешественник обратил внимание на развитие индийцев и предметы ихнего быта. Больше всего его поразил мяч, которым игрались дети, сделанный из неизвестного материала. Увесистая черная сфера была довольно прыгучей и легкой, сильно обходя по качеству обычные европейские мячи из кожи.

Так Колумб узнал о деревьях, растущих в Индонезии и Бразилии, надрезы по которым, давали тянущийся сок- латекс. Именно он дал начало новому материалу, из которого в современности изготавливают резинотехнические изделия . Каучук того времени довольно часто использовали в элементах одежды или строительстве, благодаря своим не промокающим свойствам. За долгие годы совершенствования, с каучуком проводили множество экспериментов, как физических, так и химических, в надежде улучшить его свойства.

И лишь в 1893 году ученый Гудьир сумел сделать из каучука современный вид резины, которая так широко используется в наши дни. Благодаря правильной термической обработке каучук сумел получить нужные свойства и навсегда превратиться в универсальную и прочную резину. В ХХ веке резину стали активно использовать как качественный и надежный изолятор, прокладывая тысячи новых электрических маршрутов по всему миру.

Дальше - больше. Резина стала неотъемлемой частью промышленности и жизни человека. Резиновые элементы присутствовали в бытовой технике, мебели, одежде, обуви, предметах гигиены, посуде. Что касается крупных промышленных сфер, то здесь резина стала неотъемлемой частью всех процессов. На сегодняшний день трудно себе представить, как бы выглядели автомобильные шины, отрезные круги , элементы запчастей, строительных инструментов и многое другое, если бы однажды не была произведена резина, как отдельный вид материала.

СССР смог поставить в производство резину не только природного происхождения, но и синтетического, научившись добывать и синтезировать каучук, а после и саму резину из природных газов, нефти, спирта. Западные ученые долго не признавали этот факт возможным, поскольку для них эта технология была неизведанная, однако спустя годы, европейские и американские признали синтетический каучук - реальностью. Это позволило СССР шагнуть далеко вперед в технологическом плане и значительно сберечь бюджет страны, не допуская дорогостоящие закупки сырья для резины из Бразилии или стран Индонезии.

Синтетический каучук практически не уступал по свойствам природному компоненту, однако его низкая эластичность не позволяла изготавливать из него такие важные промышленные товары, как автомобильные и авиационные шины. Со временем благодаря современным разработкам и постоянным экспериментам с температурными режимами и химическим составляющими, эта проблема была полностью исчерпана.

Таким образом, щедрая природа и научные факторы смогли дать миру такой материал как резина, которая позволяет развивать современные технические и медицинские наработки, улучшая их своими природными свойствами. На сегодняшний день, резина - это один из самых прочных, выносливых и универсальных материалов человечества.