Перспективы и анализ развития солнечных электростанций в пустынях с использованием сверхпроводящих магистралей для повышения эффективности электроснабжения. Энергия солнца. Развитие гелиоэнергетики Королевство кривых зеркал

Опубликовано ssu-filippov в 29 ноября, 2010 - 00:44

Солнечные электростанции, которые производят другие солнечные электростанции, которые… Этот экспансивный процесс, если ему дать где разгуляться, например в пустыне, обеспечит человечество прорвой энергии. Такой необычный план спасения планеты от нехватки энергии и экологического коллапса придуман в Японии.

Поля солнечных батарей могли бы дать миру колоссальное количество электричества. Вопрос в том, как сделать такие сооружения экономически оправданными. Свой ответ на него пытается дать экзотический «проект разведения солнечной энергетики в Сахаре» (Sahara Solar Breeder Project).

Вместо того чтобы вести тысячи тонн солнечных панелей через моря, предлагается производить такие батареи на месте, на краю пустыни. Сырьё же будет браться буквально под ногами. Ведь песок - богатейший источник кремнезёма.

Из него можно было бы извлекать кремний для солнечных батарей. Их следует выпускать здесь же. После того как мощность одного такого поля достигнет определённой величины, где-то неподалёку можно построить второй завод по переработке песка и выпуску солнечных панелей. Ведь сам этот процесс требует немало энергии: её и дадут первые батареи.

Второй завод, выпустив достаточно солнечных ячеек, позволит поставить поодаль третий завод по переработке песка… Так солнечные электростанции начнут «размножаться» по экспоненте. Причём на работу заводов будет уходить небольшая доля общей мощности солнечных электростанций.


Рис. 1. Основной принцип «солнечного размножителя» прост: солнечные батареи за счёт вырабатываемой энергии должны обеспечить основу для дальнейшей своей экспансии (иллюстрация diginfo.tv).

Полученную энергию надо будет переправлять крупным потребителям - в Европу, а может, и дальше. Тут, полагают японцы, не обойтись без кабелей из высокотемпературных сверхпроводников. Их следует охлаждать жидким азотом, а проходить они будут под землёй, для минимизации перепадов температуры грунта.

Лидер данного проекта, профессор Хидеоми Коинума (Hideomi Koinuma) из Токийского университета (University of Tokyo), впервые представил свой план в 2009 году. Тогда это была только мечта. Но теперь сделаны первые скромные шаги к её воплощению.

Дело сдвинулось с мёртвой точки стараниями двух японских агентств – по наукам и технологиям (JST) и по международному сотрудничеству (JICA). Под их эгидой ныне усилия намерены объединить специалисты из шести японских университетов и институтов, а также алжирского научно-технологического университета Орана (USTO).

Проект, предусматривающий создание в Африке исследовательского центра по солнечной энергии (Sahara Solar Energy Research Center – SSERC), весной 2010 года был отобран JST для дальнейшего продвижения. Рассчитан SSERC на пять лет, и его цель – разработка и испытание технологий, необходимых для того, чтобы Solar Breeder мог бы стать реальностью.


Рис. 2. План японцев в общих чертах. Местные энергия и материалы не только позволят производить всё больше солнечных панелей, но и опреснять воду, необходимую для отвоевания территории у пустыни (иллюстрация diginfo.tv).

Кроме того, в 2011 году учёные намерены построить в Сахаре одну «свою» солнечную установку мощностью всего 100 киловатт. Она сыграет роль закладного камня и полигона. Специалисты намерены узнать, как на этой батарее скажется работа в жёстких условиях, как на неё повлияют песчаные бури.

Со сверхпроводящими кабелями тоже не всё ещё ясно. Нужная технология, причём промышленная, уже существует. Но нужно выяснить, как наилучшим образом прокладывать такие кабели в пустыне, да ещё на столь огромные расстояния, каковы окажутся затраты на работу охлаждающего оборудования…

В общем, перед нами лишь исследовательский проект. Никто ещё не может сказать - стартует ли когда-нибудь «саморазмножение» электростанций в Сахаре. Но если план сработает, к 2050 году та самая первая 100-киловаттная батарея «размножится» до полей производительностью 100 гигаватт. Это солидная величина - порядка 3% от установленной мощности электростанций всего мира. А что будет дальше, можно только фантазировать.


Рис. 3. Крупнейшая в мире солнечная электростанция на основе фотоэлектрических панелей на данный момент – Finsterwalde Solar Park в Германии. Первая очередь этого солнечного парка была построена в 2009 году, а вторая и третья – в 2010-м. Пиковая мощность «парка» составляет 80,7 мегаватта (фото с сайта greenunivers.com).

По степени воздействия на человечество Коинума сравнивает «засеивание Сахары» солнечными панелями с высадкой астронавтов на Луне, потому дал своему проекту ещё одно название - Super Apollo. Первое слово – это не просто обозначение превосходной степени, но и намёк на использование сверхпроводников, а второе - отсыл к знаменитой космической программе американцев и имя бога Солнца.

Конечно, в идее Хидеоми ещё много белых пятен. Экономику цикла ещё предстоит оценить в деталях. И тут умельцам из Страны восходящего солнца есть на кого ориентироваться. Похожий замысел лелеет организация Desertec Foundation и целый конгломерат немецких компаний. Они собираются к 2020–2025 году выстроить в Сахаре комплекс солнечных электростанций на всё те же 100 гигаватт.

План немцев куда более приземлённый: тут нет экспоненциального «размножения» заводов солнечных батарей, самих батарей тоже нет, а вместо них предполагается использовать термальные электростанции с зеркалами-концентраторами. И линии электропередачи для переброски энергии в Европу планируются классические.

Тем не менее стоимость проекта Desertec Foundation оценена в сотни миллиардов евро. Интересно посмотреть - сумеют ли японцы с алжирцами сократить затраты со своей стратегией «разведения» электростанций.

Проект SSERC имеет и ещё одно важное назначение. Коинума рассчитывает, что «солнечный» центр в Алжире сыграет роль катализатора развития местной науки и промышленности. В рамках проекта японцы собираются делиться своими знаниями и технологиями с подрастающим поколением африканских учёных и инженеров, которым, если всё пойдёт по плану, и предстоит превращать в быль японскую сказку о пустынной сети солнечных электростанций.

Солнечные электростанции, которые производят другие солнечные электростанции, которые... Этот экспансивный процесс, если ему дать где разгуляться, например в пустыне, обеспечит человечество прорвой энергии. Такой необычный план спасения планеты от нехватки энергии и экологического коллапса придуман в Японии.

Поля солнечных батарей могли бы дать миру колоссальное количество электричества. Вопрос в том, как сделать такие сооружения экономически оправданными. Свой ответ на него пытается дать экзотический «проект разведения солнечной энергетики в Сахаре» (Sahara Solar Breeder Project).

Вместо того чтобы вести тысячи тонн солнечных панелей через моря, предлагается производить такие батареи на месте, на краю пустыни. Сырьё же будет браться буквально под ногами. Ведь песок — богатейший источник кремнезёма.

Из него можно было бы извлекать кремний для солнечных батарей. Их следует выпускать здесь же. После того как мощность одного такого поля достигнет определённой величины, где-то неподалёку можно построить второй завод по переработке песка и выпуску солнечных панелей. Ведь сам этот процесс требует немало энергии: её и дадут первые батареи.

Второй завод, выпустив достаточно солнечных ячеек, позволит поставить поодаль третий завод по переработке песка... Так солнечные электростанции начнут «размножаться» по экспоненте. Причём на работу заводов будет уходить небольшая доля общей мощности солнечных электростанций.

Основной принцип «солнечного размножителя» прост: солнечные батареи за счёт вырабатываемой энергии должны обеспечить основу для дальнейшей своей экспансии (иллюстрация diginfo.tv).

Полученную энергию надо будет переправлять крупным потребителям — в Европу, а может, и дальше. Тут, полагают японцы, не обойтись без кабелей из высокотемпературных сверхпроводников . Их следует охлаждать жидким азотом, а проходить они будут под землёй, для минимизации перепадов температуры грунта.

Лидер данного проекта, профессор Хидеоми Коинума (Hideomi Koinuma) из Токийского университета (University of Tokyo), впервые представил свой план в 2009 году. Тогда это была только мечта. Но теперь сделаны первые скромные шаги к её воплощению.

Дело сдвинулось с мёртвой точки стараниями двух японских агентств – по наукам и технологиям (JST) и по международному сотрудничеству (JICA). Под их эгидой ныне усилия намерены объединить специалисты из шести японских университетов и институтов, а также алжирского научно-технологического университета Орана (USTO).

Проект, предусматривающий создание в Африке исследовательского центра по солнечной энергии (Sahara Solar Energy Research Center – SSERC), весной 2010 года был отобран JST для дальнейшего продвижения. Рассчитан SSERC на пять лет, и его цель – разработка и испытание технологий, необходимых для того, чтобы Solar Breeder мог бы стать реальностью.


План японцев в общих чертах. Местные энергия и материалы не только позволят производить всё больше солнечных панелей, но и опреснять воду, необходимую для отвоевания территории у пустыни (иллюстрация diginfo.tv).

Прежде всего речь идёт об извлечении кремния из песка, причём с достаточно высокой чистотой продукта, чтобы из него можно было создавать солнечные панели. Такой технологии пока нет. Но авторы плана надеются соорудить опытную установку по переработке песка, способную выдавать тонну чистого кремния в год.

Кроме того, в 2011 году учёные намерены построить в Сахаре одну «свою» солнечную установку мощностью всего 100 киловатт. Она сыграет роль закладного камня и полигона. Специалисты намерены узнать, как на этой батарее скажется работа в жёстких условиях, как на неё повлияют песчаные бури.

Со сверхпроводящими кабелями тоже не всё ещё ясно. Нужная технология, причём промышленная, уже существует. Но нужно выяснить, как наилучшим образом прокладывать такие кабели в пустыне, да ещё на столь огромные расстояния, каковы окажутся затраты на работу охлаждающего оборудования...

В общем, перед нами лишь исследовательский проект. Никто ещё не может сказать — стартует ли когда-нибудь «саморазмножение» электростанций в Сахаре. Но если план сработает, к 2050 году та самая первая 100-киловаттная батарея «размножится» до полей производительностью 100 гигаватт. Это солидная величина — порядка 3% от установленной мощности электростанций всего мира. А что будет дальше, можно только фантазировать.


Крупнейшая в мире солнечная электростанция на основе фотоэлектрических панелей на данный момент – Finsterwalde Solar Park в Германии. Первая очередь этого солнечного парка была построена в 2009 году, а вторая и третья – в 2010-м. Пиковая мощность «парка» составляет 80,7 мегаватта (фото с сайта greenunivers.com).

По степени воздействия на человечество Коинума сравнивает «засеивание Сахары» солнечными панелями с высадкой астронавтов на Луне, потому дал своему проекту ещё одно название — Super Apollo. Первое слово – это не просто обозначение превосходной степени, но и намёк на использование сверхпроводников, а второе — отсыл к знаменитой космической программе американцев и имя бога Солнца.

Конечно, в идее Хидеоми ещё много белых пятен. Экономику цикла ещё предстоит оценить в деталях. И тут умельцам из Страны восходящего солнца есть на кого ориентироваться. Похожий замысел лелеет организация

Photo: wikipedia

Возобновляемые источники энергии - это источники на основе постоянно существующих или периодически возникающих в среде потоков энергии. Возобновляемая энергия не является следствием целенаправленной деятельности человека, и это является ее отличительным признаком.

Источником энергии солнечного излучения служит термоядерная реакция на Солнце. Солнечная энергия испускается в виде электромагнитного излучения.
Чтобы использовать его энергию, необходимо решить такие вопросы, как: уловить его наибольший поток, сохранить и передать производные от него тепло и электричество без потерь.

Ресурсы солнечной энергии практически неограниченны. Так, по некоторым расчетам , количество её, достигшее поверхности Земли в течение минуты больше чем энергия, доступная из всех других источников в течение года.

Используя энергию солнца, гелиосистема позволяет экономить в год до 75% необходимого традиционного топлива.

Преимущества использования солнечной энергии - экологическая чистота (отсутствие эмиссии СО2) и неисчерпаемость сырья с одной стороны и длительный «срок годности». Солнечная батарея не имеет движущихся и трущихся частей, и может работать без замены рабочих элементов не теряя КПД 20-25 лет.

Недостатками использования солнечной энергии являются естественные колебания солнечной активности — изменение продолжительности светового дня в течение года.
Отрицательные воздействия энергоустановок:

  • использование больших по масштабу площадей, что связанно с возможной деградацией земель и изменением микроклимата в районе расположения станции.
  • использование «хлористых» технологий получение «солнечного» кремния. Однако в мире и в России в стадии опытно-промышленного производства находятся бесхлорные экологически чистые технологии. Их широкое внедрение обеспечит, безусловно, экологическую чистоту фотоэлектрических станций и установок.

Направления разработок гелиоэнергетики

В настоящее время разработка гелиоэнергетических (греч. Helios - солнце) систем ведется по двум направлениям:

  • Создание энергетических концентраторов;
  • Совершенствование солнечных батарей.

Работа над первым направлением включает в себя создание систем, работающих по принципу концентрации энергии. Солнечная энергия в таком случае при помощи линзы фокусируется на относительно небольшом по площади фотоэлектрическом элементе.

Например, фотоэлектрические системы с линзой Френеля, разрабатываемые японской компанией Sharp. Или силиконовые комплексные полупроводники (Калифорнийский технологический университет — Калтеха), разрабатываемые по принципу концентрирования солнечного света морскими организмами в частности морской губкой «Venus’s flower basket».

Принцип работы солнечной батареи (генератора энергии) - это прямое преобразование электромагнитного излучения солнца в электричество или тепло. Этот процесс называется фотоэлектрическим эффектом (ФЭ). При этом генерируется постоянный ток.

На сегодняшний момент существуют следующие виды солнечных батарей :

1.Фотоэлектрические преобразователи (ФЭП). Это полупроводниковые устройства, прямо преобразующие солнечную энергию в электричество. Определенное число объединенных между собой ФЭП называются солнечной батареей.

2.Гелиоэлектростанции (ГЕЭС). Это солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и других машин (паровой, газотурбинной, термоэлектрической и др.)

3.Солнечные коллекторы (СК). Это нагревательные низкотемпературные установки, использующиеся для автономного горячего водоснабжения жилых и производственных объектов.

Солнечные фотоэлектрические установки могут быть следующих основных типов:
Автономные, работающие без подключения к сети, т.е. солнечные модули генерируют электричество для освещения, питания телевизора, радио, насоса, холодильника или ручного инструмента. Для хранения энергии используются аккумуляторные батареи.

Соединенные с сетью — в этом случае объект подключен к сети централизованного электроснабжения. Избыток электрической энергии продается компании-владельцу распределительных сетей по согласованному тарифу.

Резервные системы, в которых фотоэлектрические системы подключаются к сетям низкого качества. И в случае отключения сети или недостаточного качества сетевого напряжения нагрузка частично или полностью покрывается солнечной системой.
Основной комплексной проблемой, препятствующей успешному всеобщему внедрению батарей в производство является их низкая эффективность. То есть неэффективное сочетание стоимости, размеров и коэффициента полезного действия продукта (КПД). Существующие солнечные батареи (фотоэлементы) работают с КПД максимум 30-35%. Ведутся активные поиски возможности удвоения мощности солнечных фотоэлектрических установок. Хотя пока стоимость солнечной энергии остается слишком высокой для промышленности: киловатт-час солнечной энергии стоит 20-25 центов, между тем как цена электричества, производимого ТЭЦ, работающей на угле, составляет 4-6 центов, на природном газе — 5-7 центов, на биологическом топливе — 6-9 центов.

Тенденции развития
На сегодняшний день наиболее известными компаниями производящими солнечные батареи являются Siemens, Sharp, Kyocera, Solarex, BP Solar, Shell и другие.

По данным журнала «В мире науки» (№1-2007), «за последние 10 лет годовое производство фотоэлектрической энергии увеличивалось на 25%, а в одном только 2005 г. — на 45%. В Японии в абсолютном выражении оно достигло 833 МВт, в Германии — 353 МВт, в США — 153 МВт».

По данным Solarhome.Ru , суммарная площадь установленных в наше время солнечных коллекторов в мире превышает уже 50 млн. м 2 , что эквивалентно замещению генерации на органическом топливе в объеме примерно 5-7 млн. тонн условного топлива в год.

Необходимость делать ставку на надежную, экологически чистую энергию по доступным ценам провоцируют активные поиски и разработку новых технологий.

За последнее десятилетие солнечные батареи за счет усовершенствования технологии их изготовления стали доступнее. Так, в Японии подобное оборудование ежегодно дешевеет на 8%, в Калифорнии — на 5%….

Перспективы развития и использования солнечных систем в России
Южные регионы и регионы с континентальным и резко континентальным климатом России являются наиболее благоприятными для применения солнечных коллекторов в качестве основного источника для отопления в зимний период.

В условиях центральной России гелиосистемы обеспечат значительную экономию использования классических видов топлива, существенно дополняя баланс энергопотребления (опыт внедрения гелиоустановок-водогреев в Калининграде).
В настоящее время в России не ведется массовое производство и внедрение гелиосистем.

Хотя существующая в последнее время тенденция развития теплоснабжения, направленная на децентрализацию крупных источников поставки тепла — использования локальных технологий энергосбережения, может явиться стимулом развития возобновляемых источников энергии, в том числе и энергии солнца.
На сегодняшний день в России гелиоустановки производятся Рязанским заводом металлокерамический приборов; Ковровским заводом; ЗАО "Южно-русской энергетической компанией"; АО "Конкурент" г. Жуковский Московской обл. Отдельные партии коллекторов изготавливает НПО машиностроения г. Реутов Московской обл. и др.

Подготовила Ольга Плеханова

Солнечные электростанции, которые производят другие солнечные электростанции, которые… Этот экспансивный процесс, если ему дать где разгуляться, например в пустыне, обеспечит человечество прорвой энергии. Такой необычный план спасения планеты от нехватки энергии и экологического коллапса придуман в Японии.

Поля солнечных батарей могли бы дать миру колоссальное количество электричества. Вопрос в том, как сделать такие сооружения экономически оправданными. Свой ответ на него пытается дать экзотический «проект разведения солнечной энергетики в Сахаре» (Sahara Solar Breeder Project).

Вместо того чтобы вести тысячи тонн солнечных панелей через моря, предлагается производить такие батареи на месте, на краю пустыни. Сырьё же будет браться буквально под ногами. Ведь песок - богатейший источник кремнезёма.

Из него можно было бы извлекать кремний для солнечных батарей. Их следует выпускать здесь же. После того как мощность одного такого поля достигнет определённой величины, где-то неподалёку можно построить второй завод по переработке песка и выпуску солнечных панелей. Ведь сам этот процесс требует немало энергии: её и дадут первые батареи.

Второй завод, выпустив достаточно солнечных ячеек, позволит поставить поодаль третий завод по переработке песка… Так солнечные электростанции начнут «размножаться» по экспоненте. Причём на работу заводов будет уходить небольшая доля общей мощности солнечных электростанций.

Рис. 1. Основной принцип «солнечного размножителя» прост: солнечные батареи за счёт вырабатываемой энергии должны обеспечить основу для дальнейшей своей экспансии (иллюстрация diginfo.tv).

Полученную энергию надо будет переправлять крупным потребителям - в Европу, а может, и дальше. Тут, полагают японцы, не обойтись без кабелей из высокотемпературных сверхпроводников. Их следует охлаждать жидким азотом, а проходить они будут под землёй, для минимизации перепадов температуры грунта.

Лидер данного проекта, профессор Хидеоми Коинума (Hideomi Koinuma) из Токийского университета (University of Tokyo), впервые представил свой план в 2009 году. Тогда это была только мечта. Но теперь сделаны первые скромные шаги к её воплощению.

Дело сдвинулось с мёртвой точки стараниями двух японских агентств – по наукам и технологиям (JST) и по международному сотрудничеству (JICA). Под их эгидой ныне усилия намерены объединить специалисты из шести японских университетов и институтов, а также алжирского научно-технологического университета Орана (USTO).

Проект, предусматривающий создание в Африке исследовательского центра по солнечной энергии (Sahara Solar Energy Research Center – SSERC), весной 2010 года был отобран JST для дальнейшего продвижения. Рассчитан SSERC на пять лет, и его цель – разработка и испытание технологий, необходимых для того, чтобы Solar Breeder мог бы стать реальностью.

Рис. 2. План японцев в общих чертах. Местные энергия и материалы не только позволят производить всё больше солнечных панелей, но и опреснять воду, необходимую для отвоевания территории у пустыни (иллюстрация diginfo.tv).

Прежде всего речь идёт об извлечении кремния из песка, причём с достаточно высокой чистотой продукта, чтобы из него можно было создавать солнечные панели. Такой технологии пока нет. Но авторы плана надеются соорудить опытную установку по переработке песка, способную выдавать тонну чистого кремния в год.

Кроме того, в 2011 году учёные намерены построить в Сахаре одну «свою» солнечную установку мощностью всего 100 киловатт. Она сыграет роль закладного камня и полигона. Специалисты намерены узнать, как на этой батарее скажется работа в жёстких условиях, как на неё повлияют песчаные бури.

Со сверхпроводящими кабелями тоже не всё ещё ясно. Нужная технология, причём промышленная, уже существует. Но нужно выяснить, как наилучшим образом прокладывать такие кабели в пустыне, да ещё на столь огромные расстояния, каковы окажутся затраты на работу охлаждающего оборудования…

В общем, перед нами лишь исследовательский проект. Никто ещё не может сказать - стартует ли когда-нибудь «саморазмножение» электростанций в Сахаре. Но если план сработает, к 2050 году та самая первая 100-киловаттная батарея «размножится» до полей производительностью 100 гигаватт. Это солидная величина - порядка 3% от установленной мощности электростанций всего мира. А что будет дальше, можно только фантазировать.


Рис. 3. Крупнейшая в мире солнечная электростанция на основе фотоэлектрических панелей на данный момент – Finsterwalde Solar Park в Германии. Первая очередь этого солнечного парка была построена в 2009 году, а вторая и третья – в 2010-м. Пиковая мощность «парка» составляет 80,7 мегаватта (фото с сайта greenunivers.com).

По степени воздействия на человечество Коинума сравнивает «засеивание Сахары» солнечными панелями с высадкой астронавтов на Луне, потому дал своему проекту ещё одно название - Super Apollo. Первое слово – это не просто обозначение превосходной степени, но и намёк на использование сверхпроводников, а второе - отсыл к знаменитой космической программе американцев и имя бога Солнца.

Конечно, в идее Хидеоми ещё много белых пятен. Экономику цикла ещё предстоит оценить в деталях. И тут умельцам из Страны восходящего солнца есть на кого ориентироваться. Похожий замысел лелеет организация Desertec Foundation и целый конгломерат немецких компаний. Они собираются к 2020–2025 году выстроить в Сахаре комплекс солнечных электростанций на всё те же 100 гигаватт.

План немцев куда более приземлённый: тут нет экспоненциального «размножения» заводов солнечных батарей, самих батарей тоже нет, а вместо них предполагается использовать термальные электростанции с зеркалами-концентраторами. И линии электропередачи для переброски энергии в Европу планируются классические.

Тем не менее стоимость проекта Desertec Foundation оценена в сотни миллиардов евро. Интересно посмотреть - сумеют ли японцы с алжирцами сократить затраты со своей стратегией «разведения» электростанций.

Проект SSERC имеет и ещё одно важное назначение. Коинума рассчитывает, что «солнечный» центр в Алжире сыграет роль катализатора развития местной науки и промышленности. В рамках проекта японцы собираются делиться своими знаниями и технологиями с подрастающим поколением африканских учёных и инженеров, которым, если всё пойдёт по плану, и предстоит превращать в быль японскую сказку о пустынной сети солнечных электростанций.

Гелиоэнергетика – получение энергии от Солнца. Имеется несколько технологий

солнечной энергетики. Получение электроэнергии от лучей Солнца не даёт

вредных выбросов в атмосферу, производство стандартных силиконовых батарей

также причиняет мало вреда. Но производство в широких масштабах многослойных

элементов с использованием таких экзотических материалов, как арсенид галлия

или сульфид кадмия, сопровождается вредными выбросами.

Солнечные батареи имеют ряд преимуществ: они могут помещаться на крышах

домов, вдоль шоссейных дорог, легко трансформируются, используются в

отдалённых районах.

Главной причиной, сдерживающей использование солнечных батарей, является их

высокая стоимость. Нынешняя стоимость солнечной электроэнергии равняется 4,5

дол. за 1 Вт мощности и, как результат, цена 1кВт\час электроэнергии в 6 раз

дороже энергии, полученной традиционным путём сжигания топлива. Возможно

использование солнечной энергии для отопления жилищ.

Однако в условиях нашей страны 80% энергии Солнца приходится на летний

период, когда нет необходимости отапливать жильё, кроме того, солнечных дней

в году недостаточно, чтобы использование солнечных батарей стало экономически

целесообразно.

домах. Они экономичнее традиционных угольных котлов.

Создано опытное производство систем горячего водоснабжения, базирующихся на

использовании солнечной энергии. Эти устройства включают в себя солнечные

коллекторы и теплонакопители. Оптимальный для местного климата вариант –

система с четырьмя коллекторами – позволяет обеспечить потребности в горячем

водоснабжении семьи из 4-5 человек. Зимой установку можно интегрировать со

стандартной системой отопления. Стоимость оборудования варьируется в пределах

900-3500 дол. США.

Интересны примеры использования солнечной энергии в разных странах.

В условиях Великобритании жители сельской местности покрывают потребность в

тепловой энергии на 40-50% за счёт использования энергии Солнца.

Современные солнечные коллекторы могут обеспечить нужды сельского хозяйства

в тёплой воде в летний период на 90%, а в переходный период – на 55-65%, в

зимний – 30%.

Наиболее эффективно в странах ЕС солнечные установки эксплуатируются в

Греции, Португалии, Испании, Франции: выработка солнечными энергоустановками

составляет соответственно 870 000, 290 000, 255 200, 174 000 МВт\ч в год.

В целом, по Европейскому союзу вырабатывается 1 850 000 МВт\ч в год (по

данным 1998 г.).

Наиболее суммарной площадью установленных солнечных коллекторов располагают:

США – 10 млн.кв.м, Япония – 8 млн кв.м, Израиль – 1,7 млн. кв.м, Австралия –

1,2 млн. кв.м.

В настоящее время 1 кв.м солнечного коллектора экономит в год:

электроэнергии - 1070-1426 кВт\ч;

условного топлива – 0,14-0,19 т;

природного газа – 110-145 нкуб.м;

угля – 0,18-0,24 т;

древесного топлива – 0,95-1,26 т.

Площадь солнечных коллекторов 2-6 млн. куб.м обеспечивает выработку 3,2 – 8,6

млрд кВт\ч энергии и экономит 0,42 – 1,14 млн т усл. топлива в год.

Возобновляемые источники энергии – это источники на основе постоянно существующих или периодически возникающих в среде потоков энергии. Возобновляемая энергия не является следствием целенаправленной деятельности человека, и это является ее отличительным признаком. Источником энергии солнечного излучения служит термоядерная реакция на Солнце. Солнечная энергия испускается в виде электромагнитного излучения. Чтобы использовать его энергию, необходимо решить такие вопросы, как: уловить его наибольший поток, сохранить и передать производные от него тепло и электричество без потерь. Ресурсы солнечной энергии практически неограниченны. Так, по некоторым расчетам , количество её, достигшее поверхности Земли в течение минуты больше чем энергия, доступная из всех других источников в течение года.

Используя энергию солнца, гелиосистема позволяет экономить в год до 75% необходимого традиционного топлива.

Преимущества использования солнечной энергии – экологическая чистота (отсутствие эмиссии СО2) и неисчерпаемость сырья с одной стороны и длительный «срок годности». Солнечная батарея не имеет движущихся и трущихся частей, и может работать без замены рабочих элементов не теряя КПД 20-25 лет. Недостатками использования солнечной энергии являются естественные колебания солнечной активности - изменение продолжительности светового дня в течение года. Отрицательные воздействия энергоустановок:

    использование больших по масштабу площадей, что связанно с возможной деградацией земель и изменением микроклимата в районе расположения станции.

    использование «хлористых» технологий получение «солнечного» кремния. Однако в мире и в России в стадии опытно-промышленного производства находятся бесхлорные экологически чистые технологии. Их широкое внедрение обеспечит, безусловно, экологическую чистоту фотоэлектрических станций и установок.

Направления разработок гелиоэнергетики В настоящее время разработка гелиоэнергетических (греч. Helios – солнце) систем ведется по двум направлениям:

    Создание энергетических концентраторов;

    Совершенствование солнечных батарей.

Работа над первым направлением включает в себя создание систем, работающих по принципу концентрации энергии. Солнечная энергия в таком случае при помощи линзы фокусируется на относительно небольшом по площади фотоэлектрическом элементе.

Например, фотоэлектрические системы с линзой Френеля, разрабатываемые японской компанией Sharp. Или силиконовые комплексные полупроводники (Калифорнийский технологический университет - Калтеха), разрабатываемые по принципу концентрирования солнечного света морскими организмами в частности морской губкой «Venus"s flower basket».

Принцип работы солнечной батареи (генератора энергии) – это прямое преобразование электромагнитного излучения солнца в электричество или тепло. Этот процесс называется фотоэлектрическим эффектом (ФЭ). При этом генерируется постоянный ток. На сегодняшний момент существуют следующие виды солнечных батарей : 1.Фотоэлектрические преобразователи (ФЭП). Это полупроводниковые устройства, прямо преобразующие солнечную энергию в электричество. Определенное число объединенных между собой ФЭП называются солнечной батареей.

2.Гелиоэлектростанции (ГЕЭС). Это солнечные установки, использующие высококонцентрированное солнечное излучение в качестве энергии для приведения в действие тепловых и других машин (паровой, газотурбинной, термоэлектрической и др.)

3.Солнечные коллекторы (СК). Это нагревательные низкотемпературные установки, использующиеся для автономного горячего водоснабжения жилых и производственных объектов. Солнечные фотоэлектрические установки могут быть следующих основных типов: Автономные, работающие без подключения к сети, т.е. солнечные модули генерируют электричество для освещения, питания телевизора, радио, насоса, холодильника или ручного инструмента. Для хранения энергии используются аккумуляторные батареи.

Соединенные с сетью - в этом случае объект подключен к сети централизованного электроснабжения. Избыток электрической энергии продается компании-владельцу распределительных сетей по согласованному тарифу.

Резервные системы, в которых фотоэлектрические системы подключаются к сетям низкого качества. И в случае отключения сети или недостаточного качества сетевого напряжения нагрузка частично или полностью покрывается солнечной системой. Основной комплексной проблемой, препятствующей успешному всеобщему внедрению батарей в производство является их низкая эффективность. То есть неэффективное сочетание стоимости, размеров и коэффициента полезного действия продукта (КПД). Существующие солнечные батареи (фотоэлементы) работают с КПД максимум 30-35%. Ведутся активные поиски возможности удвоения мощности солнечных фотоэлектрических установок. Хотя пока стоимость солнечной энергии остается слишком высокой для промышленности: киловатт-час солнечной энергии стоит 20–25 центов, между тем как цена электричества, производимого ТЭЦ, работающей на угле, составляет 4–6 центов, на природном газе - 5–7 центов, на биологическом топливе - 6–9 центов.

Тенденции развития На сегодняшний день наиболее известными компаниями производящими солнечные батареи являются Siemens, Sharp, Kyocera, Solarex, BP Solar, Shell и другие.

По данным журнала «В мире науки» (№1-2007), «за последние 10 лет годовое производство фотоэлектрической энергии увеличивалось на 25%, а в одном только 2005 г. - на 45%. В Японии в абсолютном выражении оно достигло 833 МВт, в Германии - 353 МВт, в США - 153 МВт».

По данным Solarhome.Ru , суммарная площадь установленных в наше время солнечных коллекторов в мире превышает уже 50 млн. м 2 , что эквивалентно замещению генерации на органическом топливе в объеме примерно 5-7 млн. тонн условного топлива в год.

Необходимость делать ставку на надежную, экологически чистую энергию по доступным ценам провоцируют активные поиски и разработку новых технологий.

За последнее десятилетие солнечные батареи за счет усовершенствования технологии их изготовления стали доступнее. Так, в Японии подобное оборудование ежегодно дешевеет на 8%, в Калифорнии - на 5%.... Перспективы развития и использования солнечных систем в России Южные регионы и регионы с континентальным и резко континентальным климатом России являются наиболее благоприятными для применения солнечных коллекторов в качестве основного источника для отопления в зимний период.

В условиях центральной России гелиосистемы обеспечат значительную экономию использования классических видов топлива, существенно дополняя баланс энергопотребления (опыт внедрения гелиоустановок-водогреев в Калининграде). В настоящее время в России не ведется массовое производство и внедрение гелиосистем.

Хотя существующая в последнее время тенденция развития теплоснабжения, направленная на децентрализацию крупных источников поставки тепла - использования локальных технологий энергосбережения, может явиться стимулом развития возобновляемых источников энергии, в том числе и энергии солнца. На сегодняшний день в России гелиоустановки производятся Рязанским заводом металлокерамический приборов; Ковровским заводом; ЗАО "Южно-русской энергетической компанией"; АО "Конкурент" г. Жуковский Московской обл. Отдельные партии коллекторов изготавливает НПО машиностроения г. Реутов Московской обл. и др. Подробнее: http://www.bellona.ru/Factsheet/sunenergy