Основные процессы в ректификационной колонне. Промышленное применение ректификации. Теоретические основы процесса ректификации

Ректификация применяется для разделения жидких смесей на компоненты или фракции, различающиеся летучестью, (фугитивностью), и осуществляется путем многократного двустороннего массо-и теплообмена между противоточно движущимися паровым и жид­костным потоками - флегмой.

Взаимодействие фаз при ректификации представляет собой диф­фузию легколетучего компонента (л.л.к.) из жидкости в пар и труд­нолетучего компонента (т.л.к.) из пара в жидкость. Способ контак­тирования потоков может быть ступенчатый (в тарельчатых колон­нах) или непрерывный (в насадочных колоннах).

Назначение контактных устройств (тарелок, насадки) состоит в создании условий, способствующих максимальному приближению парового и жидкостного потоков. Чтобы эти потоки могли обмени­ваться веществом и энергией, они должны быть неравновесны друг к другу. При контактировании парового и жидкостного потоков в результате массо- и теплообмена величина неравновесности уменьшается затем потоки отделяются один от другого, и процесс про­должается путем нового контактирования этих фаз уже на другой смежной ступени, с другими жидкими и паровыми потоками. В результате многократно повторяющегося на последовательных тарелках (ступенях), контактирования движущихся в противотоке по высоте колонны жидкости и пара состав взаимодействующих фаз существенно изменяется: паровой поток при движении вверх обога­щается л.л.к., а жидкостный, стекая вниз, обедняется им, т. е. обо­гащается т.л.к. При достаточно большом пути контактирования противоположно движущихся потоков можно получить пар, выхо­дящий из верхней части колонны, представляющий собой более или менее чистый л.л.к., конденсация которого дает дистиллят, а из нижней части колонны - сравнительно чистый т.л.к., так называе­мый кубовый остаток.

Флегма образуется в результате частичной конденсации паров, выходящих из верхней части колонны, в специальных теплообменных: аппаратах - дефлегматорах - или вводится в колонну в виде питания. Для создания парового потока в колонне в ее ниж­нюю часть вводят определенное количество тепла непосредственным впуском греющего пара (случай открытого обогрева колонны) или подачей его в специальный теплообменник, через поверхность теп­лопередачи которого тепло передается кипящему кубовому остатку (случай закрытого обогрева).

Чаще разделяемую смесь (питание) в жидком, парообразном или смешанном виде подают в середину колонны (рис. 2) между концентрационной, или укрепляющей и отгонной, или исчерпывающей частью колонны. Верхнюю тарел­ку отгонной части колонны называют питающей тарелкой. Колонна, имеющая концентрационную и отгонную части, назы­вается полной ректификационной колонной (рис. 2а). В такой колонне создаются наиболее благоприятные условия для получения в практически чистом виде обоих компонентов бинарной смеси, однако возможно и самостоятельное действие отгонной и концентрационной колонны. Такие колонны именуют неполными.


Рис. 2 Схемы ректификационных колон

1 – дефлегматор; 2 – колонна; А – разделяемая смесь; В – вода; Д – дистиллят; П – пар; О – остаток.

Из нижней части неполной отгонной колонны (рис. 2б) в жидком виде отводится практически чистый т.л.к., над верхней тарелкой получается пар, несколько обогащенный л.л.к. В неполную концентрационную колонну, (рис. 2в) разделяемую смесь вводят в парообразном виде под ее нижнюю тарелку. Из верхней части концентрационной колонны отводят в парообразном, виде практически чистый л.л.к., а с нижней тарелки получается флегма, несколько обогащенная т.л.к. В отличие от полной ректификационной колонны в неполных колоннах для дальнейшего обогащения дистиллята отгонной колон­ны л.л.к. или остатка концентрационной колонны т.л.к. нужна их до­полнительная ректификация.

Орошение флегмой, необходимое для осуществления процесса ректификации, в отгонных колоннах достигается подачей питания в жидком виде на верхнюю тарелку. В полных и укрепляющих ко­лоннах орошение проводят за счет части конденсата пара, выходящего из верхней части колонны. Остальной пар образует дистил­лят - верхний продукт колонны, поэтому орошение и отбор дистил­лята количественно связаны между собой.

Отношение количества горячего (при температуре конденсации) орошения или флегмы (L) к количеству дистиллята (D) называет­ся флегмовым числом (R):

R=L/D = (G - D)/D, (1)

где G - количество пара, выходящего из колонны.

Флегмовое число может изменяться от 0 до ∞. При R=0 не бу­дет массообмена и обогащения пара л.л.к. При R =∞ весь конден­сат паров, выходящий из колонны, полностью поступает на ороше­ние; в этом случае отбор дистиллята равен нулю, колонна работает «на себя» (при установившемся процессе нижний продукт колонны будет иметь тот же состав, что и исходное питание). Практически колонна должна работать при 0

Отбирать дистиллят можно после частичной или полной конден­сации пара (рис. 3). В 1 варианте обеспечивается дополнительное обогащение дистиллята л.л.к. вследствие частичной конденсации пара и массообмена между флег­мой и паром при противоточном движении их в дефлегматоре. Во 2варианте пар, выходящий из колонны, дистиллят и флегма имеют одинаковый состав, и дефлегматор не дает никакого укреп­ляющего эффекта. В спиртовой промышленности обычно исполь­зуют первый вариант.

Рис. 3. Способы орошения колонн: 1 - дефлегматор; 2 - колонна; 3 - кон­денсатор.

Тепло конденсации пара обыч­но отводят водой, продуктами, подлежащими нагреванию, или воздухом в специальных воздуш­ных дефлегматорах.

Открытый обогрев колонн при­меним в том случае, когда грею­щий пар не оказывает отрица­тельного влияния на качество ко­нечных продуктов, не взаимодействует с продуктами ректификации и не образует новых, трудноразделимых систем в колонне. При от­крытом обогреве конденсат греющего пара смешивается с конеч­ным продуктом разделения (остатком). Закрытый обогрев требует наличия пара более высоких параметров.

Процесс массообмена между паровым и жидкостным потоками на контактных устройствах определяется величиной поверхности контакта фаз (F m 2), средней разностью концентраций, или сред­ней движущей силой процесса (∆С кг/кг), и коэффициентом массопередачи, отнесенным к 1 м 2 поверхности фазового контакта [К кг/(м 2 *ч)]. Коэффициент массопередачи зависит от природы ве­щества и гидродинамического режима контакта фаз. Количество вещества, перешедшего из одной фазы в другую (в кг/ч), опреде­ляется равенством

М=К*F*∆C (2)

Конструкция контактного устройства должна обеспечивать воз­можно большую величину массообмена на нем. Это достигается в первую очередь созданием развитой поверхности контакта фаз. Та­релки ректификационных колонн могут быть колпачковые, решетча­тые, чешуйчатые, клапанные и др. (рис. 4). Насадочная колонна представляет собой цилиндр, наполненный насадкой - телами с развитой поверхностью (кольца, шары, седла, сетки, блоки, пакеты, рейки и т. д.). Пар и жидкость контактируют на поверхности насад­ки при противоточном движении.

Работа контактных устройств оценивается пропускной способностью по пару и жидкости, способностью разделять рабочую смесь, диапазоном устойчивой работы, гидравлическим сопротивлением и др.

Пропускная способность по пару и жидкости определяет произ­водительность колонн, или удельный съем конечного продукта с единицы поперечного сечения колонн.

Способность разделять перегоняемую смесь называют эффективностью контактного устройства или колонны в целом и обычно оценивают числом теоретических тарелок (ступеней изменения концентраций), или числом единиц переноса. Эффективность тарельчатых колонн, как правило, оценивают числом теоретических тарелок (т.т.).

Допустим, поступающая на тарелку жидкость (рис. 5, а) содержит X i +1л.л.к., а покидающая ее - X * i ; проходящий через тарелку пар соответственно содержит Y i и у* i +1 того же компонента. Если тарелка обеспечивает контакт пара и жидкости, в результате которого покидающие тарелку пар Y*. i +1 и жидкость Х* i будут равновесны, то такая тарелка имеет эффективность, равную одной теоретической тарелке.

Рис. 4. Типы тарелок:

a - ситчатые (чешуйчатые): 1 - сосливными стаканами; 2 -без стаканов (решетчатые); б- колпачковые: 1 - одноколпачковые,;. 2 - многоколпачковые и клапаны клапановых таре­лок; в: 1 -- круглые; 2 - прямоугольные.

Рис. 5. Теоретическая тарелка в диаграмме Х-Y

Практически такое равновесие почти никогда не достигается. Теоретическая тарелка является идеальной тарелкой и служит эталоном для оценки эффективности реальных тарелок.

Мерой эффективности ре­альной, или действительной, та­релки является коэффици­ент полезного дейст­вия (КПД) ее. В практике оп­ределяют КПД не отдельной тарелки, а средний КПД таре­лок всей колонны или значительного ее участка, который равен отношению числа тарелок (п) , необходимых для осуществления заданного разделения смеси, к числу реальных (N), необходимых для той же цели:

Величина КПД тарелок зависит от их конструкции, диаметра колонны, межтарелочного расстояния, скорости пара, загрузки колон­ны, физических свойств разделяемой смеси и многих других факто­ров, поэтому обычно КПД определяют опытным путем.

Эффективность работы насадочных колонн оценивают, числомединиц переноса, предъявляющим собой изменение концентрации в колонне, отнесенное к единице движущей силы. Чаще поль­зуются высотой насадки, эквивалентной одной единице переноса (ВЭЕП). Она изменяется в широких пределах в зависимости от конструкции и размера насадки, а также гидродинамического ре­жима работы; колонны. Для мелкой насадки ВЭЕП может состав­лять несколько миллиметров, для крупной (обладающей высокой пропускной способностью по пару и жидкости) - 1-1,5 м.

В спиртовом производстве наибольшее распространение получили колпачковые (капсульные) тарелки. Многоколпачковые тарелки применяют в колоннах для разделения жидкостей, не содержащих взвешенных частиц, одноколпачковые - для разделения жидкостей со взвешенными частицами. Реже применяют ситчатые тарелки, которые имеют отверстия 2,5-3,5 мм (для разгонки первых из упомянутых жидкостей) и 8-12 мм (для вторых). В последние годы в спиртовой промышленности начали применять тарелки новых типов: решетчатые провальные (без сливных устройств), чешуйчатые и клапанные. Они обладают большей пропускной способностью по пару и жидкости.

При выборе типа тарелки учитывают ее удельную производи­тельность, эффективность, экономичность конструкции, а также способность обеспечивать оптимальные условия работы колонны для заданного технологического режима.

Устойчивая работа тарелок должна соответствовать таким на­грузкам по пару и жидкости, при которых достигаются наиболее интенсивный их контакт и высокая эффективность. При больших нагрузках по пару может происходить большой унос жидкости с тарелки на тарелку, на тарелке может накапливаться жидкость сверх допустимого количества. Верхний предел нагрузки по пару характеризуется «захлебыванием» тарелок. Внешний признак за­хлебывания - резкое повышение давления в нижней части колонны и понижение давления в верхней. При нагрузках по пару, прибли­жающихся к минимально допустимым, часть жидкости (флегмы) переходит с тарелки на тарелку, не вступая в контакт с паром. Большая нагрузка по жидкости также может привести к захлебы­ванию колонны. Максимально допустимая нагрузка по жидкости определяется количеством ее, необходимым для создания активной зоны контакта обменивающихся сред.

На работу тарелок большое влияние оказывает межтарелочное расстояние. Оно определяется в. первую очередь необходимостью создания условий для контакта пара и жидкости, происходящего в зонах барботажа, пены и брызг. Эти зоны расположены последова­тельно над тарелкой и должны вмещаться между смежными тарел­ками. Высота каждой зоны определяется физическими свойствами разделяемой жидкости, конструкцией тарелки, нагрузкой по пару и обычно находится опытным путем. При работе с жидкостями, дающими рыхлую пену, унос жидкости в основном происходит за счет хлопьев пены, обладающих высокой парусностью, Для колонн, перерабатывающих жидкости, не пенящиеся и не содержащие взве­шенных частиц, обычно принимаемое межтарелочное расстояние 178-230 мм; для колонн, перерабатывающих жидкости со взвешен­ными частицами, - 280-500 мм.

Коэффициент полезного действия тарелок в силу различных ус­ловий эксплуатации колонн может изменяться в пределах 0,35- 0,65.

Ректификация позволяет получить спирт высокой крепости и чистоты. Оба качества зависят от того, насколько хорошо человек, управляющий процессом, понимает его суть. Поэтому знать теорию ректификации надо каждому, кто хочет делать чистые и крепкие спиртные напитки на самогонном аппарате .

История ректификации

Начнем с процесса дистилляции, ведь именно он является предшественником ректификации. Нет точной информации о том, кто первый изобрел дистилляцию. В. Шнайдер, составитель словаря алхимических и фармацевтических терминов, считает, что данная заслуга принадлежит в первую очередь персам, которые использовали дистилляцию, чтобы получить розовую воду (эфир розы). Можно сделать вывод, что история дистилляции насчитывает более 3500 лет. Первоначально дистилляцией называли все процессы разделения смесей на компоненты. По мере их изучения процессы классифицировали и дали им наименование. Таким образом, в сейчас дистилляцией называют разделение веществ, основанное на испарении жидкости и последующей конденсации паров.


Аламбики были первыми аппаратами для дистилляции и конструкционно практически не изменились за несколько тысяч лет. Первоначально использовались, чтобы получать ароматные масла.

Наука не стояла на месте, процесс дистилляции тщательно изучался и совершенствовался. С начала XVI века наблюдалось большое количество работ по подбору испарительных кубов и системы обогрева аппаратов. Для обеспечения непрерывной работы колонны использовались водяные и песочные бани, применялись восковые свечи. Только к 1415 году впервые было предложено применять теплоизоляцию, а именно шерсть животных. В конце XVI века было выявлено преимущество водяного охлаждения конденсатора, до этого времени охлаждение было воздушным.

В период XVI по XIX век стремительно происходила модернизация аппаратурного оснащения. Исходя из инертности материалов по отношению к возгоняемым жидкостям, в перегонных кубах в качестве оптимальных использовались стекло и керамика, в дальнейшем нержавеющая сталь. В 1709 году впервые появились теории о дефлегмации (возвращении части сконденсировавшихся паров в колонну).

Результатом всех исследований и разработок стало изобретение первой ректификационной колонны непрерывного действия французскими инженерами Адамом, Бераром и Перье, получившие на нее патент в 1813 году. Она до сих пор соответствует современным ректификационным колоннам. С этого периода начинается история ректификации в науке и промышленности.

Понятие ректификации

Существуют различные определения ректификации.

Ректификация - это процесс разделения бинарных (двухкомпонентные смеси, например, спирт-вода) или многокомпонентных смесей за счет противоточного массо- и теплообмена между паром и жидкостью. Ректификация - разделение жидких смесей на практически чистые компоненты, отличающиеся по температуре кипения, путём многократных испарений жидкости и конденсации паров.

Несмотря на столь сложные формулировки, в процессе ректификации нет ничего трудного. Имея необходимое оборудование и базовые знания, ее с легкостью можно провести у себя на кухне.

Процесс ректификации

Э. Крель в своих трудах «Руководство по лабораторной перегонке» изложил основной принцип ректификации:

Обмен веществ (массообмен и теплообмен) происходит путем прохождения паровой смеси через наполнитель колонны.

На скорость и качество этого процесса влияют следующие факторы:

  1. Коэффициент диффузии (прохождение паровой смеси через наполнитель колонны);
  2. Концентрация возгоняемого вещества;
  3. Площадь поверхности контакта в колонне;
  4. Разность температур кипения разделяемых компонентов.

Можно сделать вывод, что процесс ректификации спирта будет лучше протекать при следующих условиях: хорошей диффузии, высокой концентрации отделяемого компонента, развитой площади контакта.

Особое внимание Крель уделил важности состояния межфазной поверхности и перечислил факторы, определяющие процесс ректификации:

  1. Свойства разделяемой смеси: летучесть компонентов, состав смеси, взаимная растворимость компонентов.
  2. Характеристика насадки: форма насадочного тела, способ укладки насадки, плотность заполнения колонны.
  3. Косвенные факторы: способ подачи жидкости в колонну, интенсивность и метод обогрева, рабочее давление.

Виды ректификационных колонн

В зависимости от применяемых контактных устройств, колонны делятся на тарельчатые и насадочные.

Тарельчатые ректификационные колонны

В основном распространены в нефтеперерабатывающей отрасли и на крупных производствах. Тарельчатые колонны представляют собой вертикальную трубу, в которой через определенное расстояние устанавливаются тарелки разной конфигурации, где идет контакт между паровой и жидкой фазами.

Недостаток колонн : дороговизна и большие габариты.

Преимущества : тарельчатая ректификационная колонна тоньше разделяет фракции.


Насадочные ректификационные колонны

На сегодняшний день широкое распространение получили насадочные колонны. Это те же вертикальные трубы, только в них устанавливается другое контактное устройство - насадка.

Насадки разделяются на два типа:

Нерегулярная - неупорядоченный слой насыпного или заполняемого инертного материала (например, спирально призматическая насадка СПН).

Преимущества : малый вес, большая площадь контакта.

Недостатки : высокое сопротивление, сложность правильного распределения паров и флегмы.


Регулярная - представляет собой скомпонованные в кассеты перфорированные сетки и листы (к ним относится регулярная проволочная насадка Панченкова (РПН).

Преимущества : высокая эффективность, малый перепад давления.

Недостатки : насадочная ректификационная колонна явных недостатков не показала.

Процессы в ректификационной колонне

Рассмотрим, что происходит в самой колонне на примере оборудования Фабрики «Доктор Губер». Здесь нет никакой магии или секретных технологий, все очень просто.

Ректификационные колонны для частного применения представляют собой вертикальные трубки диаметром от 40 до 50 мм, высотой не более 180 см, заполненные насадками РПН или СПН. Данные колонны оснащены холодильником или дефлегматором, а так же узлом отбора спирта.


Рассмотрим периодическую ректификацию на колонне насадочного типа с регулярной насадкой РПН, которую каждый сможет повторить в домашних условиях.

При нагреве куба с брагой, являющейся многокомпонентной смесью, в состав которой помимо воды и спирта входят побочные продукты брожения (альдегиды, кислоты, эфиры и т.д.), начинается процесс кипения и испарения данных компонентов. Температура начала процесса может быть разной, все зависит от качественного и количественного состава бражки или спирта-сырца. На протяжении процесса пар поднимается по колонне, начинает ее прогревать и частично конденсироваться, при этом образуется «дикую флегму».

Образование дикой флегмы происходит за счет охлаждения корпуса колонны, в связи с потерями тепла в окружающую среду. Возникают качественные и количественные потери по спирту (до 10%).

В стандартных ректификаторах проблема образования дикой флегмы решается с помощью теплоизолирования колонны.

Высококвалифицированные специалисты Фабрики Доктор Губер нашли другой способ решения данной проблемы путем создания колонны Торнадо. Структура колонны позволяет поднимающемуся пару проходить сначала по внешнему контуру колонны, создавая при этом активный подогрев. В результате потери тепла в окружающую среду от рабочей части колонны становятся минимальными. На выходе готовый продукт получается с улучшенными органолептическими и физико-химическими показателями.

После прогрева колонны пары достигают холодильника или дефлегматора, в котором они конденсируются и возвращаются в колонну в виде флегмы.

Поток флегмы направляется навстречу поднимающимся по колонне парам. Происходит массо- и теплообмен. Температура при ректификации спирта имеет ключевое значение: флегма на своем пути из зоны с низкой температурой в зону более высоких температур поглощает из потока паров высококипящие компоненты (сивушные масла) и выделяет легкокипящие компоненты (спирт). Так как процессы эти протекают на границе раздела фаз, то очень важно создать максимально возможную поверхность контакта. Для этого ректификационные колонны Доктор Губер оснащают РПН, который создает максимальную поверхность контакта по всей ее длине.

Качество получаемого спирта зависит от скорости отбора. А именно, чем больше флегмы забирается из колонны, тем хуже идет процесс массообмена, следовательно уменьшается крепость спирта на выходе из колонны. И наоборот, чем меньше забирается флегмы, тем лучше процесс массобмена и повышение крепости конечного продукта.

Для контроля скорости отбора спирта на колонны устанавливаются игольчатые краны для тонкой регулировки и смотровые стекла.

Создать развитую поверхность контакта недостаточно, необходимо ее правильно орошать. В насадочных колоннах имеет место пристеночный эффект. Флегма проходит не через насадку, а стекает по стенкам колонны, в результате чего падает эффективность ее работы. При правильном заполнении колонны этот эффект минимален, он практически отсутствует в колонне Торнадо, где устанавливается колпачковая тарелка с центральным изливом. В итоге флегма направляется ровно на насадку и достигается максимальный КПД данной колонны.

Что касается диаметра и высоты колонны, по данным Стедмана и Мак-Магона диаметр насадочных колонн оказывает незначительное влияние на качество разделяемых смесей.

Высота колонны. Речь идет о ее рабочей части (часть колонны, которая наполнена насадкой) должна быть не более (6-8)хD. Если высота больше данного выражения, то колонны заполняют секционно, чтобы избежать пристеночного эффекта.

Как выбрать ректификационную колонну

При выборе колонны обращайте внимание на следующие пункты:

  1. Материал колонны, в том числе и наполнитель, должны быть инертны по отношению к парам спирта;
  2. Колонна должна быть оснащена регулируемым узлом отбора;
  3. Наличие высокопроизводительного холодильника или дефлегматора;
  4. Обязательное присутствие атмосферного клапана для безопасной работы.

P.S. Ректификация спирта не сложный процесс и при наличии необходимого оборудования ее с легкостью можно провести в домашних условиях. К 2016 году ассортимент ректификационного оборудования безгранично возрастает. Несмотря на небольшие конструктивные отличия всех аппаратов, процесс ректификации остается неизменным и его качество будет в первую очередь зависеть от знаний и опыта человека, контролирующего процесс.

Одним из наиболее распространенных методов разделения жидких однородных смесей, состоящих из двух или большего числа компонентов, является перегонка (дистилляция и ректификация). В широком смысле перегонка представляет собой процесс, включающий частичное испарение разделяемой смеси и последующую конденсацию образующихся паров, осуществляемые однократно или многократно. В результате конденсации получается жидкость, состав которой отличается от состава исходной смеси.

Ректификация представляет собой процесс многократного частичного испарения жидкости и конденсации паров. Процесс осуществляется путем контакта потоков пара и жидкости, имеющих различную температуру, и проводятся обычно в колонных аппаратах. При каждом контакте из жидкости испаряется преимущественно низкокипящий компонент (НКК), которым обогащаются пары, а из паров конденсируются преимущественно высококипящий компонент (ВКК), переходящий в жидкость. Такой двусторонний обмен компонентами, повторяемый многократно, позволяет получить, в конечном счете, пары, представляющие собой почти чистый НКК. Эти пары после конденсации в отдельном аппарате дают дистиллят (ректификат) и флегму - жидкость, возвращаемую для орошения колонны и взаимодействия с поднимающимися парами. Пары получают путем частичного испарения снизу колонны остатка, являющегося почти чистым ВКК.

Процессы ректификации осуществляются в аппаратах, технологическая схема которых зависит от назначения аппарата и давления в нем, а конструкция - от способа организации контакта фаз.

При ступенчатом осуществлении процесса ректификации в колонных аппаратах контакт пара и жидкости может происходить в противотоке (на тарелках провального типа), в перекрестном токе (на колпачковых тарелках), в прямотоке (струйные тарелки).

Если процесс ректификации осуществляется непрерывно во всем объеме колонного аппарата, то контакт пара и жидкости при движении обеих фаз может происходить только в противотоке. Современные ректифицирующие аппараты можно классифицировать в зависимости от технологического назначения, давления и внутреннего устройства, обеспечивающего контакт между паром и жидкостью.

По технологическому назначению ректификационные аппараты подразделяются на колонны атмосферно-вакуумных установок, термического и каталитического крекингов, вторичной перегонки нефтепродуктов, а также для ректификации газов, стабилизации легких нефтяных фракций и т.д.

К современным ректификационным аппаратам предъявляются следующие требования: высокая разделительная способность и производительная способность, достаточная надежность и гибкость в работе, низкие эксплуатационные расходы, небольшой вес и простота, техничность конструкции.



Последние требования не менее важны чем первые, поскольку они не только определяют капитальные затраты, но и в значительной мере влияют на величину, эксплутационных расходов, обеспечивают легкость и удобства изготовления аппарата, монтажа и демонтажа, ремонта, контроля, испытания, а также безопасность эксплуатации и пр.

Кроме перечисленных выше требований ректификационные аппараты должны отвечать также требованиям государственных стандартов, ведомственных нормалей и инспекций Гостехнадзора.

Технологическая схема аппарата зависит от состава разделяемой смеси, требований к качеству получаемых продуктов, от возможностей уменьшения энергетических затрат, назначения аппарата, его места в технологической цепочке всей установки и от многих других факторов.

Процесс ректификации жидких смесей осуществляется на ректификационных установках, состоящих из нескольких аппаратов. Рассмотрим принцип разделения двухкомпонентной смеси ректификацией на примере работы подобной установки (рис. 10.1). Подлежащая разделению смесь непрерывно подается в ректификационную колонну через ввод, расположенный несколько выше середины корпуса колонны. Введенная жидкая смесь опускается по контактным устройствам (тарелкам) в нижнюю часть колонны, называемую кубом. Навстречу потоку жидкости поднимается пар, образующийся в результате кипения жидкости в кубе колонны. Образующиеся пары содержат в основном НКК и некоторое количество ВКК. При взаимодействии пара с жидкостью на тарелках колонны ВКК конденсируется и уносится вниз колонны потоком жидкости. За счет этого в поднимающихся парах возрастает количество НКК . Таким образом, при подъеме паров они обогащаются НКК , в то время как жидкость, стекающая вниз, обогащается ВКК .

Исходная смесь из промежуточной емкости 1 центробежным насосом 2 подается в теплообменник 3, где подогревается до температуры кипения. Нагретая смесь поступает на разделение в ректификационную колонну 5 на тарелку питания, где состав жидкости равен составу исходной смеси. Стекая вниз по колонне, жидкость взаимодействует с под­нимающимся вверх паром, образующимся при кипении кубовой жидкости в кипятильнике 4. Начальный состав пара примерно равен составу кубового остатка, т. е. обеднен легколетучим компонентом. В результате массообмена с жидкостью пар обо­гащается легколетучим компонентом

Рис. 10.1. Принципиальная схема ректификационной установки:

1 - ёмкость для исходной смеси; 2, 9 - насосы; 3- теплообменник- подогреватель исходного сырья; 4 – кипятильник; 5 – ректификационная колонна; 6 – дефлегматор; 7 – холодильник дистиллята; 8 – емкость для сбора дистиллята; 10 – холодильник кубовой жидкости; 11 – емкость для кубовой жидкости.

Для более полного обо­гащения верхнюю часть колонны орошают в соответствии с за­данным флегмовым числом жидкостью (флегмой), которая получается в дефлегматоре 6 путем конденсации пара, выходящего из колонны. Часть конденсата выводится из де­флегматора в виде готового продукта разделения - дистиллята, который охлаждается в теплообменнике 7, и направляется в промежуточную емкость 8.

Из кубовой части колонны насосом 9 непрерывно выводится кубовая жидкость - продукт, обогащенный труднолетучим компонентом, который охлаждается в теплообменнике 10 и напра­вляется в емкость 11.

Таким образом, в ректификационной колонне осуществляется непрерывный неравновесный процесс разделения исходной бинарной смеси на дистиллят с высоким содержанием легко­летучего компонента и кубовой остаток, обогащенный трудно­летучим компонентом.

Ректификацию многокомпонентных смесей, а они в практике встречаются чаще, чем двухкомпонентные, протекает по рассмотренной выше схеме, хотя число используемой при этом аппаратуры увеличивается.

В ректификационных установках используют главным образом аппараты двух типов: колонны со ступенчатым контактом фаз (тарельчатые) и непрерывным контактом (пленочные и насадочные).

Ректификацию многокомпонентных смесей можно проводить в различной последовательности, с использованием многих простых колонн (на одну меньше числа компонентов исходной смеси) и с использованием одной сложной колонны.

Для процесса ректификации в основном применяют тарельчатые колонны. В них устанавливают горизонтальные тарелки с устройствами, обеспечивающими хороший контакт между жидкостью и паром.

Диаметр колонны определяют в зависимости от производительности установки и скорости паров в колонне, которую выбирают в пределах 0,6 - 1,0 м/с . Находят применение ректификационные колонны различных размеров: от небольших колонн диаметром 300 - 400 мм до высокопроизводительных установок, с колоннами диаметром 6, 8, 10, 12 м и более.

Высота колонны зависит от числа тарелок и расстояния между ними. Чем меньше расстояние между тарелками, тем ниже колонна. Однако при уменьшении расстояния между тарелками увеличивается унос брызг и возникает опасность перебросав жидкости с нижних тарелок на верхние, что существенно уменьшает к.п.д. установки. Расстояние между тарелками обычно принимают в зависимости от диаметра колонны с учетом возможности ремонта и чистки колонны. Рекомендуемые расстояния между тарелками ректификационных колонн в зависимости от их диаметра приведены ниже:

Диаметр колонны, мм до 800, 800 - 1600, 1600 - 2000

Расстояние между тарелками, мм 200 -350, 350 - 400, 400 - 500

Диаметр колонны, мм от 2000 - 2400 и свыше 2400

Расстояние между тарелками, мм 500 - 600, свыше 600.

Число тарелок ректификационной колонны или высота насадки определяются технологическим расчетом; оно зависит от физико-химических свойств разделяемых компонентов, требуемой чистоты разделения и к.п.д. тарелки. Обычно ректификационные колонны имеют 10 - 30 тарелок, но колонны для разделения смесей с близкими температурами кипения насчитывают сотни тарелок и имеют соответственно высоту до 30 - 90 м .

Ректификационные колонны работают обычно при атмосферном или небольшим избыточным давлением. Ограниченное применение находят вакуумные колонны и колонны, работающие при повышенном давлении. Ректификацию под вакуумом применяют в том случае, когда хотят снизить температуру в колонне, что бывает необходимо при разделении компонентов с высокой температурой кипения или веществ, нестойких при высокой температуре. Ректификацию под повышенным давлением используют для разделения сжиженных газов и легколетучих жидкостей.

Ректификация — процесс разделения смесей взаимно растворимых компонентов, различающихся по температурам кипения, путем противоточного многократного контактирования неравновесных жидкости и пара. Контактирование осуществляется, как правило, в колонных аппаратах на тарельчатых или насадочных контактных устройствах противоточно — пар снизу вверх, жидкость сверху вниз.

Колонный аппарат представляет собой вертикальную стальную трубу с размещенными внутри контактными устройствами. В тарельчатых колоннах контакт происходит ступенчато на отдельных ступенях, называемых тарелками (ситчатые, колпачковые, клапанные и т.д.), обычно путем барботажа пара сквозь слой жидкости или путем распылительного перемешивания, или другим способом, обеспечивающим максимально эффективный тепло- и массообмен. В насадочных колоннах контакт осуществляется непрерывно между паром и жидкой пленкой в слое насадки с развитой поверхностью, которой заполнена колонна (щебень, кольца, пружины, сетки и т.п.).

Жидкость, относительно богатая легкокипящими компонентами, имеющая относительно более низкую температуру, поступает на контактное устройство сверху. Пар, богатый высококипящими компонентами, имеющий более высокую температуру, поступает на контактное устройство снизу. На контактном устройстве жидкость и пар стремятся к равновесию путем тепло- и массообмена. Если равновесие между паром и жидкостью, покидающими контактное устройство достигается, то такое контактное устройство называется теоретической ступенью или теоретической тарелкой.

Простая дистилляция («самогонный аппарат») обеспечивает однократный хороший контакт жидкости и пара и эквивалентна одной теоретической ступени. Реальные тарелки промышленных колонн имеют эффективность 0,3...0,8 теоретической ступени. Для насадочных колонн есть величина, называемая высотой эквивалентной теоретической тарелке, — это высота слоя насадки, массообменная эффективность которого эквивалентна одной теоретической ступени. Эта высота может быть 100...600мм. На контактных устройствах пар обогащается низкокипящим компонентом, а жидкость высококипящим. Проходя последовательно ряд ступеней, жидкость и пар достигают заданных концентраций компонентов. Вверху колонны концентрируется низкокипящие компоненты, внизу — высококипящие. Наращивая число ступеней, можно получить любую заданную четкость разделения компонентов. По высоте колонны концентрации компонентов меняются иногда весьма нелинейно.

В аппаратах непрерывной ректификации сырье вводят примерно на середине высоты колонны, т.е. на ту тарелку, где концентрации компонентов примерно равны таковым у сырья. Сверху колонны отбирают дистиллят, богатый низкокипящими компонентами. Снизу отбирают остаток, богатый высококипящими компонентами. Пары с верхней тарелки колонны охлаждаются в конденсаторе, часть в виде паров или жидкости отбирается как дистиллят, остальное возвращается в колонну в виде жидкости. Жидкость с нижней тарелки нагревается в кипятильнике, часть жидкости отбирается как нижний продукт (остаток), остальное в виде пара возвращается в колонну.

Отношение массового расхода жидкости, поступающей из конденсатора в колонну, к массовому расходу дистиллята называется флегмовым числом . Отношение массового расхода паров из кипятильника к массовому расходу остатка называется паровым числом . Эти числа характеризуют режим работы верхней (выше питания) и нижней (ниже питания) секций колонны. Чем выше флегмовое (и паровое) число, тем легче (меньшим числом ступеней) достигается заданная четкость раделения смеси ректификацией, но также возрастают удельные затраты энергии и уменьшается производительность колонны. Флегмовое (и паровое) число не может быть меньше определенного минимального, при котором заданная четкость ректификации не достигается при сколь угодно большом числе ступеней.

При периодической ректификации в кипятильник соответствующего объема (называемый кубом колонны) загружается порция сырья, в процессе ректификации сырье не добавляют и состав кубового остатка непрерывно меняется от состава сырья до заданного высококипящего остатка. Соответственно сверху колонны отбирают дистиллят изменяющегося по времени состава. Если число компонентов смеси невелико (2...5), а количество ступеней и флегмовое число достаточны для сравнительно четкого разделения, то состав дистиллята и температура на верхней тарелке изменяется ступенчато, вначале дистиллят состоит из концентрированного самого низкокипящего компонента (назовем его первым компонентом), затем следует короткий переходный период, когда дистиллят представляет собой смесь переменного состава, в которой концентрация первого компонента убывает, а концентрация второго компонента возрастает, далее дистиллят состоит из концентрированного второго компонента, и т.д. для всех компонентов. Дистиллят переходных периодов традиционно называют bad cuts, его смешивают со следующей порцией сырья.

Если четкость разделения невелика и/или количество компонентов велико (нефтяные смеси), то ступенчатость состава дистиллята становится незаметной, состав дистиллята и температура на верхней тарелке меняются непрерывно. Многокомпонентные смеси могут быть разделены на индивидуальные компоненты повторной ректификацией узких фракций дистиллятов, содержащих уже небольшое число компонентов. Особенности ректификации нефтяных смесей обусловлены требованиями к качеству разделения на фракции и тем, что нефтяные смеси состоят из тысяч компонентов. Многокомпонентность нефтяных смесей обуславливает непрерывный состав дистиллята при периодической ректификации для любого практически достижимого числа ступеней и флегмового числа.

Качество разделения на фракции определяется по результатам простой дистилляции (стандарт ASTM D86) проб данной фракции, по температурам 5% и 95% отгона. Стандартами на соответствующие нефтепродукты определяется, что перекрытие температур 95% и 5% отгона между соседними фракциями должно быть не более 10...15С. Например, если 95% бензиновой фракции, полученной на данной колонне, отгоняется по D86 не более чем при 180С, то 5% дизельной фракции, полученной на этой же колонне, должно отгоняться по D86 не менее чем при 170С.

В ректификационной колонне (рисунок 2.2) снизу движутся пары, а сверху навстречу парам подают жидкость, представляющую собой почти чистый низкокипящий компонент (флегма). На каждой тарелке колонны пар и жидкость вступают в контакт. При этом из пара

конденсируется преимущественно высококипящий компонент, а из флегмы испаряется преимущественно низкокипящий компонент (рисунок 2.3).

В результате этого составы пара и жидкости изменяются, приближаясь к равновесным. Пар становится богаче низкокипящим компонентом, а жидкость насыщается высококипящим компонентом. Пар конденсируют в конденсаторе. Часть этого конденсата идет в виде флегмы на орошение колонны, а другую часть – дистиллят отбирают как готовый продукт. Жидкость, выходящую из нижней части колонны, называют кубовым остатком.

Рисунок 2.2 – Схема ректификационной колонны

Рисунок 2.3 – Схема взаимодействия жидкости и пара

Обычно ректификационный аппарат состоит из двух частей – верхней и нижней, каждая из которых представляет собой организованную поверхность контакта фаз между паром и жидкостью. Исходная смесь F подается в среднюю часть колонны и в результате процесса делится на две части: часть, обогащенную низкокипящим компонентом (НК) – дистиллят D , и часть, обедненную НК – кубовый остаток W .

2.3.3 Непрерывная ректификация

При осуществлении непрерывной ректификации исходная смесь вводится на тарелку питания, которая делит колонну на две части (рисунок 2.4). В верхней части колонны должно быть обеспечено возможно большее укрепление паров, т.е. обогащение их НК с тем, чтобы в дефлегматор направлялись пары, близкие по составу к чистому HК. Поэтому данная часть колонны называется укрепляющей. В нижней части колонны (от питающей до нижней тарелки) необходимо в минимальной степени удалить из жидкости низкокипящий компонент, т.е. исчерпать жидкость для того, чтобы в кипятильник стекала жидкость, близкая по составу к чистому высококипящему компоненту. Соответственно эта часть колонны называется исчерпывающей.

1 – ректификационная колонна (1а – укрепляющая часть, 1б – исчерпывающая часть); 2 – кипятильник; 3 – дефлегматор; 4 – делитель флегмы; 5 – подогреватель исходной смеси; 6 – холодильник дистиллята (или холодильник-конденсатор); 7 – холодильник остатка (или нижнего продукта); 8,9 – сборники; 10 – насосы

Рисунок 2.4 – Схема ректификационной установки непрерывного действия

Пар для питания ректификационной колонны образуется в кубе путем испарения части жидкocти, поступающей в куб; жидкость для орошения аппарата W (флегма) получается в дефлегматоре путем конденсации пара, имеющего состав, аналогичный составу дистиллята.

Тепло, необходимое для испарения смеси, сообщается ей в кубе. В дефлегматоре производится отвод тепла, вследствие чего поступающие в него пары полностью или частично конденсируются.

Уравнения материального баланса ректификационной колонны непрерывного действия:

, (2.1)

, (2.2)

где F , D , W – массовые или мольные расходы питания, дистиллята и кубового остатка;

–содержание низкокипящего компонента в питании, дистилляте и кубовом остатке, массовые или мольные доли.

Уравнения рабочих линий:

а) верхней (укрепляющей) части ректификационной колонны

, (2.3)

б) нижней (исчерпывающей) части колонны

, (2.4)

где y и x – переменные по высоте колонны неравновесные концентрации, мольные доли легколетучего компонента в паре и в жидкости в данном сечении колонны;

R = Ф / D – флегмовоe число;

–относительный (на 1 кмоль дистиллята) мольный расход питания.

В ректификационной колонне, в отличие от абсорбционной, принимают на основании теоретических предпосылок постоянными по высоте колонны общие мольные расходы пара и жидкости, в соответствии с этим в уравнениях (2.3) и (2.4) применяются мольные расходы и концентрации. В верхней части колонны, выше ввода исходной жидкой смеси, постоянный по высоте колонны мольный расход жидкости равен
, в нижней части колонны он равен . Постоянный по высоте мольный расход пара одинаков в верхней и нижней частях колонны.