Эксплуатация турбинных масел: условия работы и старение. Какие имеет свойства

Турбинные масла предназначены для смазывания и охлаждения подшипников различных турбоагрегатов: паровых и газовых турбин, гидротурбин, турбокомпрессорных машин.

Эти же масла используют в качестве рабочих жидкостей в циркуляционных системах, гидравлических системах различных промышленных механизмов.

Общие требования и свойства

Какие свойства особенно важны?

Во-первых, высокую окислительную стойкость, малое осадкообразование, водостойкость, т.к. вода может оказаться в системе смазки в процессе работы, антикоррозионная защита.

Эти рабочие качества получаются благодаря применению качественной нефти, тщательной очистки перед добавлением пакета присадок, повышающих противоокислительные, противокоррозионные и даже противоизносные технические свойства.

Турбинное масло в паровых турбинах, электрических насосах и турбонасосах должно соответствовать таким стандартам: кислотное число в пределах 0,3 мг КОН/г; в масле не должна содержаться вода, шлам и механические примеси.

Характеристики масла после окисления согласно ГОСТ 981-75:

  • Кислотное число – не выше 0,8 мг КОН/г
  • Массовая доля осадка – не выше 0,15 %

Стабильность вычисляют при температурной отметке +120 °С, временном отрезке – 14 ч, расходе кислорода 200 мл/мин.

Инструкция по эксплуатации оговаривает и контроль за коррозионными свойствами масла. При возникновении коррозии добавьте в масло антикоррозийную присадку.

Вот масло Тп-30 при работе в гидротурбинах должно отвечать таким стандартам: кислотное число – не выше 0,6 мг КОН/г; в масле не должна содержаться вода, шлам и прочие механические примеси; процентное содержание растворенного шлама – в пределах 0,01.

В случае уменьшения кислотного числа масла Тп-30 до 0,1 мг КОН/г и дальнейшем его повышении масло подвергается тщательной проверке для увеличения рабочего срока службы. Имеется в виду введение антиокислителя и очистка масла от шлама.

Масло полностью заменяется, если сделан вывод о невозможности его восстановления.

Перечень отечественных турбинных масел

Масло Тп-22С включает в себя набор присадок, повышающих противоокислительные и противокоррозионные свойства.

Рассчитано для применения в паровых турбинах, работающих на высоких оборотах, и в турбокомпрессорах, когда вязкость масла обеспечивает достижение требуемых антиизносных качеств. Это самое распространенное турбинное масло.

Масло Тп-22Б изготавливают из парафинистой нефти, очищенной растворителями. В его составе есть присадки, повышающие антиокислительные и антикоррозионные качества.

Если сопоставить его с маслом Тп-22С, то в масле Тп-22Б более высокие антиокислительные свойства, продолжительный рабочий срок, малое осадкообразование при эксплуатации.

Не имеет аналогов среди российских турбинных масел в случае использования для турбокомпрессоров на производстве аммиака.

Масла Тп-30, Тп-46 изготавливаются из парафинистой нефти с использованием очищения растворителем. В составе есть присадки, повышающие противоокислительные, противокоррозионные и прочие свойства масла.

Где используют масло Тп-30? В гидротурбинах, ряде турбо-, центробежных компрессоров. Турбинное масло Тп-46 применяют в судовых паросиловых установках, оборудованных редукторами, работающими под тяжелой нагрузкой.

Масла Т22, Т30, Т46, Т57 вырабатывают из высококачественной малосернистой беспарафинистой нефти. Нужные рабочие качества масла достигаются благодаря правильному подбору сырья и очищению.

Масла отличаются вязкостью и в их составе нет присадок. Однако на отечественном рынке такие масла присутствуют в довольно ограниченном количестве.

Масло Т22 имеет такие же сферы использования, что и масла Тп-22С и ТП-22Б.

Масло Т30 применяют в гидравлических турбинах, паровых турбинах, работающих на низких оборотах, турбинных и центробежных компрессорах с сильнонагруженными редукторами. Масло Т46 разработано для судовых паротурбинных установок и иных судовых механизмов, оборудованных гидроприводом.

Таблица 1. Характеристики турбинных масел

Показатели Тп-22С Тп-22Б Тп-30 Тп-46 Т22 Т30 Т46 Т57

температуре +50 °С, мм 2 /с
20-23 - - - 20-23 28-32 44-48 55-59
Кинематическая вязкость при
температуре +40 °С, мм 2 /с
28,8-35,2 28,8-35,2 41,4-50,6 61,2-74,8 - - - -
Индекс вязкости, не менее 90 95 95 90 70 65 60 70
0,07 0,07 0,5 0,5 0,02 0,02 0,02 0,05
+186 +185 +190 +220 +180 +180 +195 +195
-15 -15 -10 -10 -15 -10 -10 -
Массовая доля водорастворимых кислот и щелочей Отсутствие - Отсутствие
Массовая доля механических примесей Отсутствие
Массовая доля фенола Отсутствие
Массовая доля серы, %, не более 0,5 0,4 0,8 1,1 - - - -
Стабильность против окисления, не более: осадок, %, (маc. доля) 0,005 0,01 0,01 0,008 0,100 0,100 0,100 -
Стабильность против окисления не более: летучие низкомолекулярные кислоты, мг КОН/г 0,02 0,15 - - - - - -
Стабильность против окисления, не более: кислотное число, мг КОН/г 0,1 0,15 0,5 0,7 0,35 0,35 0,35 -
Стабильность против окисления в универсальном приборе, не более: осадок, %, (маc доля) - - 0,03 0,10 - - - -
Стабильность против окисления в универсальном приборе, не более: кислотное число, мг КОН/г - - 0,4 1,5 - - - -
Зольность базового масла, %, не более - - 0,005 0,005 0,005 0,005 0,010 0,030
Число деэмульсации, с, не более 180 180 210 180 300 300 300 300
Коррозия на стальном стержне Отсутствие - - - -
Коррозия на медной пластинке, группа - - 1 1 Отсутствие
Цвет, ед ЦНТ, не более 2,5 2,0 3,5 5,5 2,0 2,5 3,0 4,5
Плотность при +20 °С, кг/м 3 , не более 900 - 895 895 900 900 905 900

Таблица 2. Условия окисления при определении стабильности по методу ГОСТ 981-75

Масло
Температура, °С
Длительность
Расход кислорода, мл/мин
Тп-22С
+130
24
83
Тп-22Б
+150
24
50
Тп-30
+150
15
83
Тп-46
+120
14
200

Масло для судовых газовых турбин вырабатывают из трансформаторного масла, в которое заливают противозадирную и антиокислительную присадки. Таким маслом смазывают и понижают температуру редукторов и подшипников газовых турбин на судах.

Таблица 3. Технические характеристики масла для судовых газовых турбин

Показатели Норма
Кинематическая вязкость при температуре +50 °С, мм 2 /с 7,0-9,6
Кинематическая вязкость при температуре +20 °С, мм 2 /с 30
Кислотное число, мг КОН/г, не более 0,02
Температура вспышки в открытом тигле, °С, не ниже +135
Температура застывания, °С, не выше -45
Зольность, %, не более 0,005
Стабильность против окисления: массовая доля осадка после окисления, %, не более 0,2
Стабильность против окисления: кислотное число, мг КОН/г, не более 0,65

Нефтяные синтетические смазочные масла и смазочно-охлаждающие жидкости или смеси (СОЖ) широко применяются в промышленности (и механических, кузнечнопрессовых и других цехах для смазки и охлаждения трущихся металлических частей).

Нефтяные масла - высокомолекулярные вязкие жидкости желтовато-коричневого цвета. Основными компонентами нефтяных масел являются алифатические, ароматические и нафтеновые углеводороды с примесью их кислородных, сернистых и азотистых производных. Для получения специальных технических свойств в нефтяные масла часто вводятся различный присадки, например полиизобутилен, соединения железа, меди, хлора, серы, фосфора и др.

Большинство синтетических смазочных масел (турбинные, автотракторные, компрессорные, моторные, индустриальные и др.) получается путем полимеризации олефинов, например этилена, пропилена.

В состав СОЖ входят минеральные масла и эмульгаторы из натриевых солей нафтеновых кислот (асидол). Выпускаются эмульсии и пасты. Основой СОЖ служит эмульсолы - коллоидные растворы мыла и органических кислот в минеральных маслах, дающие с водой или спиртом устойчивые эмульсии.

В процессе работы станков смазочные масла и СОЖ нагреваются (до 500-700°С), и в воздух рабочей зоны выделяются туманы масел, пары углеводородов, альдегидом, окись углерода и другие токсические вещества.

Токсическое действие смазочных масел может проявиться главным образом при чистом попадании масла на открытые участки тела, при длительной работе в одежде, пропитанной маслом, а также при вдыхании тумана. Токсичность смазочных масел усиливается с повышением температуры кипения масляных фракций, с повышением их кислотности, и увеличением в их составе количества ароматических углеводородов, смол и сернистых соединении.

Масло и охлаждающие смеси в виде аэрозолей (ПДК для масляного аэрозоля - 5 мг/м3) могут оказывать резорбтивное действие, попадая в организм через органы дыхания, а также поражать последние. При этом наибольшую потенциальную опасность представляют смазочные масла, содержащие в своем составе летучие углеводороды (бензин, бензол и др.) или сернистые соединения.

Острое отравление

Описаны острые отравления при чистке цистерн из-под нефтяных масел, а также аэрозолем охлаждающих масел у работавших в помещении при высокой температуре. Симптомы отравления были сходными с наблюдающимися при остром .

Хроническое отравление

У рабочих механических (токари, фрезеровщики, шлифовщики) и других цехов при контакте с СОЖ часто наблюдаются хронические гипертрофические, реже - атрофические риниты, фарингиты, тонзиллиты, бронхиты. Возможно развитие пневмосклероза. Характерны вегетативно-сосудистые расстройства с преимущественным нарушением периферического кровообращения по типу ангиоспастического синдрома, напоминающего синдром Рейно, и вегетативного полиневрита. Имеются сведения о возможности развития липоидной пневмонии и опухолей дыхательных путей у лиц, длительно вдыхающих аэрозоли, и пары различных нефтяных масел. В большинстве случаев липоидная пневмония протекает бессимптомно.

Нефтяные масла и охлаждающие смеси оказывают на кожу обезжиривающее действие и способствуют закупорке ее пор. Это приводит к возникновению различных кожных заболеваний (дерматиты, экземы, фолликулиты, масляные угри); возможно развитие сенсибилизации к химическим агентам, используемым в качестве присадок

Некоторые масла могут вызывать кератодермии, бородавчатые разрастания, папилломы, кожный рак.

Длительный контакт с парами минеральных масел и эмульсий может способствовать заболеванию раком легких и бронхов, а также мочевого пузыря.

Могут иметь место повреждения кожных покровов (особенно кистей рук) смазочными маслами, попадающими под кожу во время испытания под большим давлением маслопроводов, дизелей и пр. При этом масло пробивает кожу и вызывает развитие отека в подкожной ткани. Резкие боли и отек держатся 8-10 дней.

У лиц, контактирующих с нефтяным гудроном, наблюдаются фотодерматозы и заболевания типа меланоза: пигментация кожи открытых и подвергающихся трению частей тела, усиленное фолликулярное ороговение, атрофия; явления типа меланоза Риля (темно-красные и бурые пятна, местами сливающиеся), фолликулярные кератозы на руках, туловище и по краю волосистой части головы встречаются среди работающих с масляными аэрозолями.

Лечение синдромальное.

Экспертиза трудоспособности

В зависимости от характера заболевания, наличия аллергического компонента, стойкости заболевания и его рецидивов - временное или постоянное отстранение от работы.

Профилактика

Важное значение для профилактики кожных заболеваний имеет уход за кожей до и после работы, правильное использование защитных паст и отмывочных средств. Рекомендуются различные защитные гидрофильные мази и пасты, пленкообразующие гидрофильные пасты, гидрофобные мази и пасты, пленки, силиконовый крем.

В целях уменьшения ощелачивания кожи при работе с СОЖ рекомендуется обмывать руки слабым раствором соляной кислоты во время перерывов в работе. После окончания смены - мытье рук водой и смазывание кожу мазями (крем с витаминами А, Е и т.п.). Для удаления масляных и других загрязнений применяются так называемые промышленные очистители. Соблюдение мер личной гигиены (мытье в душе, частая смена спецодежды и т. д.). Профилактика и лечение микротравм.

При работе в атмосфере, загрязненной большими концентрациями аэрозоля или паров смазочных масел, необходимо пользоваться противогазами.

Не следует допускать к работе лиц, страдающих любыми заболеваниями кожи.

ОБЩИЕ СВЕДЕНИЯ

:

Агрегатное состояние. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . жидкое

Внешний вид. . . . . . . . вязкая жидкость от светло-желтого до темно-коричневого цвета.

Запах. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . специфический.

Применение: для смазывания подшипников и вспомогательных механизмов турбоагрегатов (паровых и газовых турбин, турбокомпрессорных машин, гидротурбин), а также для работы в системах регулирования этих машин в качестве гидравлической жидкости.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА

Плотность при 20 °С, кг/м3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 860-900

Температура застывания при давлении 101,3 кПа, °С:

Марка Т22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 15

Марка Т30. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 10

Марка Т46. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . минус 10

Удельная теплота сгорания, кДж/кг. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41870

Растворимость в воде: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . не растворимо.

Реакционная способность: растворяется в растворителях, масла - химически инертны.

САНИТАРНО-ГИГИЕНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Регистрационный номер по CAS для масел минеральных нефтяных. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8042-47-5

Класс опасности в воздухе рабочей зоны. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

ПДКм.р. в воздухе рабочей зоны, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Код вещества, загрязняющего атмосферный воздух. . . . . . . . . . . . . . . . 2735

ОБУВ в атмосферном воздухе, мг/м3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0,05

Воздействие на людей: малотоксичное. Хроническое отравление может привести к заболеваниям кожи: масляный фолликулит, токсические меланодермии, экземы, кератозы, папилломы.

Меры предосторожности: в помещениях запрещается обращение с открытым огнем. Электрооборудование, искусственное освещение должны быть во взрывобезопасном исполнении. Не допускается использовать инструменты, дающие искру при ударе. Помещение должно быть оснащено вентиляцией.

Средства защиты: следует применять индивидуальные средства защиты: респираторы, резиновые перчатки, спецодежду, фартук. Не допускать попадания препарата внутрь организма.

Методы перевода вещества в безвредное состояние: при разливе масла необходимо собрать его в отдельную тару, место разлива засыпать песком с последующим удалением массы песка, пропитанного маслом.

ПОЖАРОВЗРЫВООПАСНЫЕ СВОЙСТВА

Группа горючести. . . . . . . . . . . . . . . . . . . . . . . . . . . . . трудногорючая жидкость

Температура вспышки, °С

Марка Т22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Марка Т30 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Марка Т46 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Марка Т57 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Температура самовоспламенения, °С. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 840

Средства пожаротушения: . . . . . . . воздушно-механическая пена, порошки.

В наше время загрязнение окружающей среды предстает одной из самых злободневных проблем напрямую связанной с угрозой здоровью и благосостоянию человека. По данным ВОЗ этим обусловлено 25% всех заболеваний. Особенно страдают дети – на их долю приходится 60% болезней по этой причине. Также большую долю занимают заболевания, связанные с профессиональной деятельностью.

Уже некоторое время длятся споры о воздействии на здоровье рабочего смазочно-охлаждающих жидкостей. Для рационального использования станков, подробнее о которых , CОЖ просто необходимы.

Что такое СОЖ

Смазочно-охлаждающая жидкость или попросту смазка для станков — неотъемлемый элемент любого технологического процесса, связанного с обработкой металла. Это жидкая маслянистая субстанция, задачей которой является охлаждение и уменьшение силы трения деталей, узлов, каких-либо поверхностей. Основное применение – обработка металлов механическим способом. Задача СОЖ: минимизировать износ инструмента, снизить количество отходов, обеспечить бесперебойность технологического процесса.

Смазки в основном производятся на основе индустриальных масел и по составу делятся на три вида:

Безводные жидкости, основа которых — минеральные масла;

Жидкости на основе продуктов нефтепереработки;

Эмульсолы — смеси эмульгатора и масла.

Чем вредны смазки для станков

Так как большинство смазок изготавливаются на основе продуктов нефтепереработки, основным фактором угрозы здоровью человека являются продукты термоокислительной деструкции (акролеин, формальдегид и др.). Другими словами, угрозу представляют вдыхаемые работником пары, которые образуются при термическом окислении масел. Установлено, что самыми опасными для человека, являются: гомологи бензола – м-ксилол и этилбензол; полиароматические углеводороды — 9- и 2-метилантрацен, 3-метилфенантрен.

В нефтяных маслах присутствуют сильные канцерогены: алкены, ароматические углеводороды, а так же соединения азота, серы и кислорода. Например, алкилфенол, по своей структуре подобен половым гормонам и при длительном воздействии способен вызвать раковые заболевания, а нонилфенол ускоряет развитие раковых клеток.

Минимизация вредного воздействия

Практически для всех составляющих смазок для станков и их продуктов термоокислительной деструкции существуют предельные нормы концентрации. Но, несмотря на это, смазочные материалы являются сложными смесями и их влияние на здоровье человека непредсказуемо.

Сегодня к СОЖ предъявляется ряд требований. В первую очередь они не должны оказывать вредного воздействия на органы дыхания и кожу рабочего, а при контакте со слизистой оболочкой — минимальный раздражающий эффект, не содержать 3,4-бензапирен, не образовывать масляный туман. Кроме того, специалисты рекомендуют изготовителям производить гидроочистку, являющуюся самым эффективным способом удалить сернистые соединения.

Турбинные масла находят широкое применение при смазывании и охлаждении подшипников в различных турбогенераторах - паровых и газовых турбинах, гидротурбинах, турбонасосах. Их же используют в качестве рабочей жидкости в системах регулирования турбоагрегатов и промышленном оборудовании.

Какие имеет свойства?

Турбина представляет собой сложный механизм, с которым нужно бережно обращаться. Используемые турбинные масла должны отвечать целому ряду характеристик:

  • обладать антиокислительными свойствами;
  • защищать детали от отложений;
  • обладать деэмульгирующими свойствами;
  • быть стойкими к воздействию коррозии;
  • обладать низкой вспениваемостью;
  • быть нейтральными к деталям из металлов и неметаллов.

Все эти характеристики турбинных масел достигаются при производстве.

Особенности производства

Производство турбинных масел ведется из глубокоочищенных нефтяных дистиллятов, в которые добавляются присадки. Благодаря антиокислительным, антикоррозийным, противоизносным присадкам улучшаются их эксплуатационные характеристики. Из-за всех этих добавок важно выбирать масла в соответствии с инструкцией по эксплуатации конкретного агрегата и рекомендациями самого производителя. Если турбинное масло будет некачественным, агрегат попросту может выйти из строя. Для достижения высокого качества при производстве составов используются сорта нефти высокого качества, применяется глубокая очистка при переработке и введении композиций присадок. Все это в сочетании способно улучшить антиокислительные и антикоррозионные свойства масел.

Основные требования

Правила технической эксплуатации различных насосных станций и сетей говорят о том, что турбинное масло не должно содержать воду, видимый шлам и механические примеси. Согласно инструкции, также требуется контролировать противоржавейные свойства масла - для этого используются специальные индикаторы коррозии, расположенные в маслобаке паровых турбин. Если все-таки в масле появляется коррозия, необходимо ввести в него специальную присадку против появления ржавчины. Предлагаем обзор популярных марок турбинных масел.

ТП-46

Это масло используется для смазки подшипников и других механизмов различных агрегатов. Масло турбинное 46 показывает хорошие антиокислительные свойства. Для его создания используется сернистая парафинистая нефть глубокой селективной очистки. Использовать состав можно на судовых паросиловых установках и в любых вспомогательных механизмах. ТП-46 служит надежной защитой поверхностей деталей от коррозии, отличается высокой стабильностью против окисления и не выделяет осадков при длительной эксплуатации турбин.

ТП-30

Масло турбинное 30 вырабатывается на основе минеральных базовых масел, куда добавляются присадки для улучшения эксплуатационных свойств состава. ТП-30 специалисты советуют использовать в турбинах любого типа, в том числе газовых и паровых. Причем эксплуатация масла доступна даже в суровых климатических условиях. Среди отличительных особенностей ТП-30 можно отметить отличную антиокислительную способность, хороший уровень минимальную кавитацию, отличную термическую стабильность.

Т-46

Турбинные масла Т-46 создаются из малосернистых беспарафинистых сортов нефти высокого качества без содержания присадок, за счет чего обеспечивается доступность его стоимости при сохранении всех эксплуатационных характеристик. Качественное сырье, используемое для производства, позволяет достигать определенного уровня вязкости для масла, что делает его очистку проще и удобнее. Использование данного состава целесообразно в судовых турбинах, паротурбинных агрегатах.

ТП-22С

Масло турбинное ТП-22С позволяет смазывать и охлаждать подшипники, вспомогательные механизмы паровых турбин, которые работают на высоких оборотах, а также его можно использовать как и уплотняющую среду в системах уплотнения и регулирования. Среди преимуществ данного масла можно выделить:

  • отличные эксплуатационные свойства за счет глубокоочищенной минеральной основы и эффективной композиции присадок;
  • отличные деэмульгирующие свойства;
  • превосходную стабильность против окисления;
  • высокий уровень вязкости;
  • минимальную кавитацию.

Применяется это масло в турбинах разного назначения - от паровых и газовых до газовых турбин электростанций.

ТП-22Б

Турбинное масло ТП-22Б вырабатывается из парафинистых сортов нефти, причем очистка выполняется селективными растворителями. Благодаря присадкам достигается хороший уровень стойкости к коррозии, окислению. Если сравнивать ТП-22Б с ТП-22С, то первое меньше образует осадка при работе оборудования, оно более долговечно в использовании. Его особенность в отсутствии аналогов среди отечественных сортов турбинных масел.

"ЛукОйл Торнадо Т"

В данной серии предлагается большой выбор турбинных масел высокого качества. В их основе лежат вырабатываемые по специальной синтетической технологии с использованием присадок беззольного типа высокой эффективности. Масла разрабатываются в соответствии с новейшими требованиями к составам подобного рода. Их целесообразно применять в паровых и с редукторами и без них. Отличные антиокислительные, антикоррозионные и противоизносные свойства способствуют минимальному образованию отложений. Масло специально адаптировано под современные высокопроизводительные турбинные установки.

Особенности состава

Современные турбинные масла создаются на основе специальных парафиновых сортов нефти, обладающих определенными вязкостно-температурными характеристиками, а также антиоксидантов и ингибиторов коррозии. Если масло планируется использовать на турбинах с зубчатыми коробками передач, то они должны обладать высокой несущей способностью, а для этого в состав добавляются противозадирные присадки.

Для получения базовых масел используется экстракция или гидрирование, а очистка и гидроочистка под высоким давлением позволяют достичь таких характеристик турбинного масла, как окислительная стабильность, водоотделение, деаэрация, которые, в свою очередь, сказываются на ценообразовании.

Для турбин разного типа

Для современных газовых и паровых турбин используются масла турбинные (ГОСТ ISO 6743-5 и ISO/CD 8068). Классификацию этих материалов, в зависимости от общего назначения, можно представить следующим образом:

  • Для паровых турбин (в том числе и с зубчатыми передачами при нормальных условиях нагрузки). В основе этих смазочных материалов лежат очищенные минеральные масла, дополненные антиоксидантами и ингибиторами коррозии. Применение масел целесообразно на индустриальных и судовых приводах.
  • Для паровых турбин с высокой несущей способностью. Такие турбинные масла дополнительно обладают противозадирными характеристиками, что обеспечивает смазку зубчатых передач при эксплуатации оборудования.
  • Для газовых турбин: такие масла производятся из очищенных минеральных составов, куда добавляются антиоксиданты,

Особенности очистки

Внутренние детали любого механизма со временем приходят в негодность из-за естественного износа. Соответственно, в самом смазочном масле также по мере его эксплуатации скапливаются механические примеси в виде воды, пыли, стружки, начнет образовываться абразив. Сделать эксплуатацию оборудования полноценной и более длительной можно постоянным контролем и очисткой турбинного масла для устранения из него механических включений.

Отметим, что современные масла дают возможность оптимизировать и увеличивать эффективность производственного процесса за счет полноценной защиты деталей и комплектующих оборудования. Качественная очистка турбинного масла - залог надежной работы турбоагрегатов в течение длительного срока без отказов и неисправностей самого оборудования. Если использовать некачественное масло, функциональная надежность оборудования будет под вопросом, а значит, произойдет его преждевременный износ.

Восстановленное после очистки масло можно использовать повторно. Именно поэтому целесообразно использовать методы непрерывной очистки, так как в этом случае можно увеличить срок работы масла, не нуждаясь в его перезаливке. Турбинные масла можно очищать разными методами: физическими, физико-химическими и химическими. Опишем все методы подробнее.

Физические

Данные методы очищают турбинное масло без нарушения его химических свойств. В числе самых популярных методов очистки:

  • Отстаивание: масло очищается от шлама, воды, механических примесей через специальные баки-отстойники. В качестве отстойника может использоваться масляный бак. Недостаток метода в малой производительности, что объясняется длительным этапом расслаивания.
  • Сепарация: очистка масла от воды и примесей выполняется в специальном барабане сепаратора центробежных сил.
  • Фильтрация: при данном методе масло очищается от примесей, которые в нем не могут раствориться. Для этого масло пропускается через пористую фильтровальную поверхность через картон, войлок или мешковину.
  • Гидродинамическая очистка: этот метод позволяет очистить не только масло, но и все оборудование. При работе остается целостной масляная пленка между металлом и маслом, на металлических поверхностях не появляется коррозия.

Физико-химические

При использовании данных методов очистки химический состав масла меняется, но незначительно. Данные методы предполагают:

  • Адсорбционную очистку, когда содержащиеся в масле вещества поглощаются твердыми высокопористыми материалами - адсорбентами. В этом качестве используются окись алюминия, эмали с отбеливающим эффектом, силикагель.
  • Промывку конденсатом: данный метод применяется, если в составе масла есть низкомолекулярные кислоты, растворимые в воде. После промывки улучшаются эксплуатационные свойства масла.

Химические методы

Очистка химическими методами предполагает использование кислот, щелочей. Щелочная очистка используется, если масло сильно изношено, а остальные методы очистки не действуют. Щелочь влияет на нейтрализацию органических кислот, остатков серной кислоты, удаление эфиров и других соединений. Очистка выполняется в специальном сепараторе под воздействием горячего конденсата.

Самый эффективный способ очистки турбинных масел - использование комбинированных агрегатов. Они предполагают проведение очистки по специально проработанной схеме. В промышленных условиях можно использовать универсальные установки, благодаря которым очистка может вестись отдельным методом. Какой бы метод очистки ни применялся, важно, чтобы конечное качество масла было на высоте. А это повысит срок стабильной эксплуатации самого оборудования.