Чистые и сверхчистые металлы. Чистые металлы из водорода Существуют ли абсолютно чистые металлы

Позволяет сэкономить энергоресурсы (кокс, уголь), получить больший выход готовой продукции из сырья, сократить цикл производства с одновременным повышением качества и улучшением экологического состояния атмосферы. Это металлургия, а именно – восстановление металлов с помощью водорода.

Предыстория, или Вперед в прошлое за чистыми металлами

Металлургия сопровождает человечество со времен бронзового и железного веков. Еще за 14 столетий до н. э. древние люди выплавляли железо кричным методом. Принцип заключался в восстановлении железной руды углем при сравнительно невысокой температуре 1000 °C. В итоге получали крицу – железную губку, затем ее проковывали до получения болванки, из которой изготавливали предметы быта и оружие.

Уже в XIV веке стали появляться примитивные горны и домницы, положившие начало современным металлургическим процессам: доменному, мартеновскому и конвертерному. Обилие каменного угля и железных руд надолго закрепили эти методы как основные. Однако, повышающиеся требования к качеству продукции, экономия ресурсов и экологическая безопасность привели к тому, что уже в середине XIX века стали возвращаться к истокам: использовать прямое восстановление чистых металлов. Первая современная такая установка появилась в 1911 г. в Швеции, выпускавшая малые партии полученных с помощью водорода металлов чистотой 99,99%. Потребителями тогда были лишь исследовательские лаборатории. В 1969 г. в Портленде (США) заработала фабрика, выпускавшая до 400 тыс. тонн чистых металлов. А уже в 1975 г. в мире этим способом выпускалось 29 млн тонн стали.

Сейчас такую продукцию ждут не только авиационная, приборостроительная отрасль, предприятия по изготовлению медицинских инструментов и электроники, но и многие другие. Особое преимущество эта технология получила в цветной металлургии, но в недалекой перспективе и «водородная черная металлургия».

ВАКУУМНАЯ ДИСТИЛЛЯЦИЯ ТУГОПЛАВКИХ МЕТАЛЛОВ 4-ГО ПЕРИОДА (Mn, Cr, Fe,Ni,Co)

Наиболее тугоплавкими и труднолетучими металлами, кото-рые в настоящее время подвергают дистилляции, являются мар-ганец, хром, железо, никель и кобальт. Все указанные металлы входят в состав важнейших технических сплавов.

Механические и физические свойства сплавов на основе же-леза, никеля и других указанных элементов, особенно свойства различных жаропрочных сплавов, в значительной "степени опре-деляются чистотой исходных материалов. Хорошо известно, что неметаллические включения и ряд примесей, образующих легко-плавкие эвтектики, резко ухудшают многие свойства сплавов: пластичность, жаропрочность, коррозионную стойкость и др. Особенно вредными примесями во всех указанных металлах яв-ляются свинец, висмут, кадмий, сера, фосфор, азот и кислород. В связи с этим получение чистых металлов 4-го периода пред-ставляет исключительный интерес как с точки зрения исследова-ния их свойств, так и для изучения влияния легирующих добавок на изменение свойств сплавов. Чистые металлы необходимы в вакуумной технике для изготовления электродов, для анодов рентгеновских трубок и для производства некоторых деталей ионных приборов. Чистое железо почти не взаимодействует с па-рами ртути. Оно может быть использовано в трубках с оксидны-ми катодами, крайне чувствительными к малейшим загрязнени-ям. Чистое железо имеет высокую магнитную проницаемость, что позволяет использовать его для экранирования магнитных полей. Никель высокой чистоты необходим для нанесения покрытий на различные тугоплавкие металлы. Значительное количество чис-тых металлов 4-го периода потребляется химической промышлен-ностью для изготовления различных соединений. Подробные све-дения о влиянии примесей на свойства рассматриваемых метал-лов можно найти в монографиях .

Наиболее распространенный метод очистки тугоплавких ме-таллов 4-го периода заключается в химическом связывании при-месей в результате окислительно-восстановительных процессов (часто путем обработки водородом) с последующей дегазацией и отгонкой примесей при плавке в вакууме. Обработка расплав-ленных металлов в вакууме получила за последние 5—10 лет ши-рокое распространение. Она применяется не только для чистых металлов, но и для сталей и других сплавов. Не имея возможно-сти подробно осветить соответствующие работы, в которых круг рассматриваемых вопросов далеко выходит за рамки настоящей темы, мы ограничимся лишь описанием работ по дистилляции указанных металлов и по отгонке металлических примесей. Под-робные сведения относительно вакуумной плавки металлов и удаления газовых примесей можно найти в ряде сборников ста-тей и монографий .

Из рассматриваемых в настоящем параграфе металлов желе-зо, никель и кобальт входят в подгруппу железа VIII группы пе-риодической системы. В качестве основных примесей в этих ме-таллах, кроме родственных элементов, присутствуют медь, крем-ний, марганец, хром, алюминий, углерод, фосфор, сера й газы (N 2 , 0 2 , Н 2). Вследствие близости свойств родственных элемен-тов степень очистки от них при дистилляции невысока, но неболь-шие добавки этих металлов мало влияют на свойства основного элемента. Все чистые металлы подгруппы железа пластичны при комнатной и даже более низкой температуре, а никель пласти-чен вплоть до температуры жидкого гелия (4,2°К). Однако увеличение содержания газовых и некоторых металлических при-месей может привести к увеличению температуры перехода ме-таллов от пластичного к хрупкому состоянию. Так, железо, со-держащее >0,005% 0 2 , становится хрупким при 20° С. Кобальт обладает более низкой пластичностью, чем железо или никель, что, возможно, является следствием его недостаточной чистоты. Все три рассматриваемых металла имеют близкие значения упру-гости пара. Их дистилляция обычно проводится при температу-рах на 20—50° С выше точки плавления, хотя все они возгоняют-ся в вакууме при температуре > 1100° С.

В отличие от металлов подгруппы железа хром и марганец высокой чистоты являются хрупкими при комнаткой температу-ре. Даже незначительные концентрации таких примесей, как уг-лерод, сера, азот и кислород, резко ухудшают их механические свойства. У чистейшего хрома температура перехода ив хрупко-го в пластичное состояние близка к 50° С. Имеется, однако, воз-можность снижения этой температуры путем дальнейшей очист-ки металла.

В настоящее время считается, что основной причиной хрупко-сти хрома при комнатной температуре является присутствие в нем азота и кислорода в количествах ^0,001%. Температура перехода хрома в пластичное состояние резко возрастает при добавлении алюминия, меди, никеля, марганца и кобальта. Воз-можно, что большой эффект очистки хрома от азота может быть получен при дистилляции его в изолированном объеме.

Марганец хрупок во всем интервале существования α-фазы (до 700° С), тогда как высокотемпературные фазы (β- и γ-Μπ) довольно пластичны. Причины хрупкости α-Μn исследованы не-достаточно.

Хром и марганец имеют значительные упругости пара ниже температур их плавления. Хром сублимирует в вакууме с замет-ной скоростью выше 1200° С. Так как температура плавления хрома находится около 1900° С, то расплавить его в вакууме не-возможно из-за сублимации. Обычно переплавка исходного ме-талла или конденсата проводится в инертном газе при давлении более 700 мм рт. ст. Марганец перегоняется как путем сублима-ции, так и из жидкой фазы.

Обычно при дистилляции всех рассматриваемых металлов можно получить конденсаты чистотой ~ 99,99%. Однако высоко-эффективная очистка возможна лишь при использовании кон-денсаторов с градиентом температуры. Дистилляция хрома и марганца подробно исследована в основном Кроллем и в лабо-ратории авторов .

Дистилляция марганца в вакууме впервые описана Тиде и Бирнбрауэром . Гейлер подробно изучила этот про-цесс и исследовала ряд свойств полученного высокочистого мар-ганца. Дистилляцию осуществляли в кварцевой трубе длиной 600 мм и диаметром 100 мм. Марганец испарялся ив магнезито-вого тигля и конденсировался на другом таком же тигле. Металл нагревали токами высокой частоты. Испарение велось при темпе-ратуре ~ 1250° С в вакууме 1—2 мм рт. ст. В качестве исходного материала использовали алюминотермический металл чистотой ~99% и технический марганец (~96—98%). Результаты одно-кратной дистилляции показаны в табл. 48. Выход чистого метал-ла составлял —50% от веса загрузки. При указанных парамет-рах процесса и загрузке 2,7 кг за 5 ч получалось 0,76 кг чистого металла. В установке Гейлер не была устранена возможность взаимодействия металла с материалом трубы, в связи с чем в ряде опытов дистиллят загрязнялся кремнием.

В связи с развитием новых отраслей техники требуются металлы очень высокой чистоты. Например, в металле германии, используемом в качестве полу­проводника, допустимо содержание на десять миллионов атомов германия только одного атома фосфора, мышьяка или сурьмы. В жаропрочных спла­вах, применяемых в ракетостроении, совершенно недопустима даже ни­чтожная примесь свинца или серы.

Один из лучших конструкционных материалов для атомных реакторов – цирконий становится совершенно непригодным, если в нем содержится даже незначительная примесь гафния, кадмия или бора, поэтому содержа­ние этих элементов в материалах атомной энергетики не должно превышать 10 -6 . Электрическая проводимость меди снижается на 14 % при нали­чии примеси мышьяка лишь 0,03 %. Особенно большое значение имеет чис­тота металлов в электронной и вычислительной технике, а так же ядерной энергети­ке. Для металлических материалов термоядерных реакторов и полупроводниковых приборов содержание примесей не должно превышать 10 -10 %. Существует несколько методов очистки металлов.

1. Перегонка в вакууме. Этот метод основан на различии летучести ме­талла и имеющихся в нем примесей.

2. Термическое разложение летучих соединений металлов. В основе дан­ного способа лежат химические реакции, в которых металл с тем или иным реагентом образует газообразные продукты, разлагающиеся затем с выде­лением высокочистого металла. Рассмотрим принцип данного способа на примере карбонильного и йодидного методов.

А) Карбонильный метод. Этот метод применяется для получения высоко­чистых никеля и железа. Подлежащий очистке технический металл нагре­вают при данном методе в присутствии оксида углерода (II): Ni + 4CO = Ni(CO) 4 , Fe + 5CO = Fe(CO) 5

Полученные летучие карбонилы Ni(CO) 4 (температура кипения 43 °С) или Fe(CO) 5 (температура кипения 105 °С) перегоняют для очистки от при­месей. Затем карбонилы разлагают при температуре выше 180 °С, в резуль­тате образуются чистые металлы и газообразный оксид углерода (II): Ni(CO) 4 = Ni + 4CO, Fe(CO) 5 = Fe + 5CO

Б) Йодидный метод. При данном методе очищаемый металл, например титан, нагревают вместе с йодом до температуры 900 °С: Ti + 2I 2 = ТI 4

Образующийся летучий тетрайодид титана поступает в реактор, в ко­тором находится проволока из чистого титана, нагреваемая электриче­ским током до 1400 °С. При этой температуре тетрайодид титана термиче­ски диссоциирует: Til 4 = Ti + 2I 2

Чистый титан осаждается на проволоке, а йод снова возвращается в процесс очистки титана. Этим методом получают также чистый цирконий, хром и другие тугоплавкие металлы.

3. Зонная плавка. Замечательным методом очистки является так назы­ваемая зонная плавка. Зонная плавка заключается в медленном протяги­вании слитка очищаемого металла через кольцевую печь. Зонной плавке подвергаются металлы, прошедшие предварительную очистку до концен­трации примесей приблизительно 1 %. Метод основан на различном со­держании примесей в твердом и расплавленном металле . Процесс прово­дят путем медленного перемещения вдоль твердого удлиненного образца (слитка) узкой расплавленной зоны, создаваемой специальным нагревате­лем (кольцевая печь).

Участок (зона) слитка металла, который в данный момент находится в печи, переходит в расплавленное состояние.

Возникает две подвижные межфазные границы: на одной (вхождение металла в печь) происходит плавление, на другой (выход металла из печи) происходит кристаллизация.

В зависимости от растворимости примесей одни концентрируются в расплавленной зоне и перемещаются вместе с ней к концу слитка, примеси других металлов концентрируются в образующихся кристаллах и остаются за движущейся зоной, при неоднократном повторении процесса они пере­мещаются к началу слитка. Вследствие этого состав образующихся кри­сталлов отличается от состава расплава.

Для достижения высокой степени очистки обычно производят несколько проходов расплавленной зоны вдоль слитка металла. В результате средняя часть слитка получается наиболее чистой, ее вырезают и используют.

Метод зонной плавки позволяет получить особо чистые металлы с со­держанием примесей 10 -7 -10 -9 %. Данный метод применяется для получения сверхчистых германия, висмута, теллура и др.

Основное достоинство данного метода - высокая эффективность. Не­достатки метода - низкая производительность, высокая стоимость, большая продолжительность процесса.

4. электрохимический ме­тод очистки металлов (рафинирование металлов).

Если в периодической таблице элементов Д.И.Менделеева провести диагональ от бериллия к астату, то слева внизу по диагонали будут находиться элементы-металлы (к ним же относятся элементы побочных подгрупп, выделены синим цветом), а справа вверху – элементы-неметаллы (выделены желтым цветом). Элементы, расположенные вблизи диагонали – полуметаллы или металлоиды (B, Si, Ge, Sb и др.), обладают двойственным характером (выделены розовым цветом).

Как видно из рисунка, подавляющее большинство элементов являются металлами.

По своей химической природе металлы – это химические элементы, атомы которых отдают электроны с внешнего или предвнешнего энергетического уровней, образуя при этом положительно заряженные ионы.

Практически все металлы имеют сравнительно большие радиусы и малое число электронов (от 1 до 3) на внешнем энергетическом уровне. Для металлов характерны низкие значения электроотрицательности и восстановительные свойства.

Наиболее типичные металлы расположены в начале периодов (начиная со второго), далее слева направо металлические свойства ослабевают. В группе сверху вниз металлические свойства усиливаются, т.к увеличивается радиус атомов (за счет увеличения числа энергетических уровней). Это приводит к уменьшению электроотрицательности (способности притягивать электроны) элементов и усилению восстановительных свойств (способность отдавать электроны другим атомам в химических реакциях).

Типичными металлами являются s-элементы (элементы IА-группы от Li до Fr. элементы ПА-группы от Мg до Rа). Общая электронная формула их атомов ns 1-2 . Для них характерны степени окисления + I и +II соответственно.

Небольшое число электронов (1-2) на внешнем энергетическом уровне атомов типичных металлов предполагает легкую потерю этих электронов и проявление сильных восстановительных свойств, что отражают низкие значения электроотрицательности. Отсюда вытекает ограниченность химических свойств и способов получения типичных металлов.

Характерной особенностью типичных металлов является стремление их атомов образовывать катионы и ионные химические связи с атомами неметаллов. Соединения типичных металлов с неметаллами — это ионные кристаллы «катион металлаанион неметалла», например К + Вг — , Сa 2+ О 2-. Катионы типичных металлов входят также в состав соединений со сложными анионами — гидроксидов и солей, например Мg 2+ (OН —) 2 , (Li +)2СO 3 2-.

Металлы А-групп, образующие диагональ амфотерности в Периодической системе Ве-Аl-Gе-Sb-Ро, а также примыкающие к ним металлы (Gа, In, Тl, Sn, Рb, Вi) не проявляют типично металлических свойств. Общая электронная формула их атомов ns 2 np 0-4 предполагает большее разнообразие степеней окисления, большую способность удерживать собственные электроны, постепенное понижение их восстановительной способности и появление окислительной способности, особенно в высоких степенях окисления (характерные примеры — соединения Тl III , Рb IV , Вi v). Подобное химическое поведение характерно и для большинства (d-элементов, т. е. элементов Б-групп Периодической системы (типичные примеры — амфотерные элементы Сr и Zn).

Это проявление двойственности (амфотерности) свойств, одновременно металлических (основных) и неметаллических, обусловлено характером химической связи. В твердом состоянии соединения нетипичных металлов с неметаллами содержат преимущественно ковалентные связи (но менее прочные, чем связи между неметаллами). В растворе эти связи легко разрываются, а соединения диссоциируют на ионы (полностью или частично). Например, металл галлий состоит из молекул Ga 2 , в твердом состоянии хлориды алюминия и ртути (II) АlСl 3 и НgСl 2 содержат сильно ковалентные связи, но в растворе АlСl 3 диссоциирует почти полностью, а НgСl 2 — в очень малой степени (да и то на ионы НgСl + и Сl —).


Общие физические свойства металлов

Благодаря наличию свободных электронов («электронного газа») в кристаллической решетке все металлы проявляют следующие характерные общие свойства:

1) Пластичность — способность легко менять форму, вытягиваться в проволоку, прокатываться в тонкие листы.

2) Металлический блеск и непрозрачность. Это связано со взаимодействием свободных электронов с падающими на металл светом.

3) Электропроводность . Объясняется направленным движением свободных электронов от отрицательного полюса к положительному под влиянием небольшой разности потенциалов. При нагревании электропроводность уменьшается, т.к. с повышением температуры усиливаются колебания атомов и ионов в узлах кристаллической решетки, что затрудняет направленное движение «электронного газа».

4) Теплопроводность. Обусловлена высокой подвижностью свободных электронов, благодаря чему происходит быстрое выравнивание температуры по массе металла. Наибольшая теплопроводность — у висмута и ртути.

5) Твердость. Самый твердый – хром (режет стекло); самые мягкие – щелочные металлы – калий, натрий, рубидий и цезий – режутся ножом.

6) Плотность. Она тем меньше, чем меньше атомная масса металла и больше радиус атома. Самый легкий — литий (ρ=0,53 г/см3); самый тяжелый – осмий (ρ=22,6 г/см3). Металлы, имеющие плотность менее 5 г/см3 считаются «легкими металлами».

7) Температуры плавления и кипения. Самый легкоплавкий металл – ртуть (т.пл. = -39°C), самый тугоплавкий металл – вольфрам (t°пл. = 3390°C). Металлы с t°пл. выше 1000°C считаются тугоплавкими, ниже – низкоплавкими.

Общие химические свойства металлов

Сильные восстановители: Me 0 – nē → Me n +

Ряд напряжений характеризует сравнительную активность металлов в окислительно-восстановительных реакциях в водных растворах.

I. Реакции металлов с неметаллами

1) С кислородом:
2Mg + O 2 → 2MgO

2) С серой:
Hg + S → HgS

3) С галогенами:
Ni + Cl 2 – t° → NiCl 2

4) С азотом:
3Ca + N 2 – t° → Ca 3 N 2

5) С фосфором:
3Ca + 2P – t° → Ca 3 P 2

6) С водородом (реагируют только щелочные и щелочноземельные металлы):
2Li + H 2 → 2LiH

Ca + H 2 → CaH 2

II. Реакции металлов с кислотами

1) Металлы, стоящие в электрохимическом ряду напряжений до H восстанавливают кислоты-неокислители до водорода:

Mg + 2HCl → MgCl 2 + H 2

2Al+ 6HCl → 2AlCl 3 + 3H 2

6Na + 2H 3 PO 4 → 2Na 3 PO 4 + 3H 2 ­

2) С кислотами-окислителями:

При взаимодействии азотной кислоты любой концентрации и концентрированной серной с металлами водород никогда не выделяется!

Zn + 2H 2 SO 4(К) → ZnSO 4 + SO 2 + 2H 2 O

4Zn + 5H 2 SO 4(К) → 4ZnSO 4 + H 2 S + 4H 2 O

3Zn + 4H 2 SO 4(К) → 3ZnSO 4 + S + 4H 2 O

2H 2 SO 4(к) + Сu → Сu SO 4 + SO 2 + 2H 2 O

10HNO 3 + 4Mg → 4Mg(NO 3) 2 + NH 4 NO 3 + 3H 2 O

4HNO 3 (к) + Сu → Сu (NO 3) 2 + 2NO 2 + 2H 2 O

III. Взаимодействие металлов с водой

1) Активные (щелочные и щелочноземельные металлы) образуют растворимое основание (щелочь) и водород:

2Na + 2H 2 O → 2NaOH + H 2

Ca+ 2H 2 O → Ca(OH) 2 + H 2

2) Металлы средней активности окисляются водой при нагревании до оксида:

Zn + H 2 O – t° → ZnO + H 2 ­

3) Неактивные (Au, Ag, Pt) — не реагируют.

IV. Вытеснение более активными металлами менее активных металлов из растворов их солей:

Cu + HgCl 2 → Hg+ CuCl 2

Fe+ CuSO 4 → Cu+ FeSO 4

В промышленности часто используют не чистые металлы, а их смеси - сплавы , в которых полезные свойства одного металла дополняются полезными свойствами другого. Так, медь обладает невысокой твердостью и малопригодна для изготовления деталей машин, сплавы же меди с цинком (латунь ) являются уже достаточно твердыми и широко используются в машиностроении. Алюминий обладает высокой пластичностью и достаточной легкостью (малой плотностью), но слишком мягок. На его основе готовят сплав с магнием, медью и марганцем — дуралюмин (дюраль), который, не теряя полезных свойств алюминия, приобретает высокую твердость и становится пригодным в авиастроении. Сплавы железа с углеродом (и добавками других металлов) — это широко известные чугун и сталь.

Металлы в свободном виде являются восстановителями. Однако реакционная способность некоторых металлов невелика из-за того, что они покрыты поверхностной оксидной пленкой , в разной степени устойчивой к действию таких химических реактивов, как вода, растворы кислот и щелочей.

Например, свинец всегда покрыт оксидной пленкой, для его перехода в раствор требуется не только воздействие реактива (например, разбавленной азотной кислоты), но и нагревание. Оксидная пленка на алюминии препятствует его реакции с водой, но под действием кислот и щелочей разрушается. Рыхлая оксидная пленка (ржавчина ), образующаяся на поверхности железа во влажном воздухе, не мешает дальнейшему окислению железа.

Под действием концентрированных кислот на металлах образуется устойчивая оксидная пленка. Это явление называется пассивацией . Так, в концентрированной серной кислоте пассивируются (и после этого не реагируют с кислотой) такие металлы, как Ве, Вi, Со, Fе, Мg и Nb, а в концентрированной азотной кислоте — металлы А1, Ве, Вi, Со, Сг, Fе, Nb, Ni, РЬ, Тh и U.

При взаимодействии с окислителями в кислых растворах большинство металлов переходит в катионы, заряд которых определяется устойчивой степенью окисления данного элемента в соединениях (Nа + , Са 2+ ,А1 3+ ,Fе 2+ и Fе 3+)

Восстановительная активность металлов в кислом растворе передается рядом напряжений. Большинство металлов переводится в раствор соляной и разбавленной серной кислотами, но Сu, Аg и Нg — только серной (концентрированной) и азотной кислотами, а Рt и Аи — «царской водкой».

Коррозия металлов

Нежелательным химическим свойством металлов является их , т. е. активное разрушение (окисление) при контакте с водой и под воздействием растворенного в ней кислорода (кислородная коррозия). Например, широко известна коррозия железных изделий в воде, в результате чего образуется ржавчина, и изделия рассыпаются в порошок.

Коррозия металлов протекает в воде также из-за присутствия растворенных газов СО 2 и SО 2 ; создается кислотная среда, и катионы Н + вытесняются активными металлами в виде водорода Н 2 (водородная коррозия ).

Особенно коррозионно-опасным может быть место контакта двух разнородных металлов (контактная коррозия). Между одним металлом, например Fе, и другим металлом, например Sn или Сu, помещенными в воду, возникает гальваническая пара. Поток электронов идет от более активного металла, стоящего левее в ряду напряжений (Ре), к менее активному металлу (Sn, Сu), и более активный металл разрушается (корродирует).

Именно из-за этого ржавеет луженая поверхность консервных банок (железо, покрытое оловом) при хранении во влажной атмосфере и небрежном обращении с ними (железо быстро разрушается после появления хотя бы небольшой царапины, допускающей контакт железа с влагой). Напротив, оцинкованная поверхность железного ведра долго не ржавеет, поскольку даже при наличии царапин корродирует не железо, а цинк (более активный металл, чем железо).

Сопротивление коррозии для данного металла усиливается при его покрытии более активным металлом или при их сплавлении ; так, покрытие железа хромом или изготовление сплава железа с хромом устраняет коррозию железа. Хромированное железо и сталь, содержащая хром (нержавеющая сталь ), имеют высокую коррозионную стойкость.

электрометаллургия , т. е. получение металлов электролизом расплавов (для наиболее активных металлов) или растворов солей;

пирометаллургия , т. е. восстановление металлов из руд при высокой температуре (например, получение железа в доменном процессе);

гидрометаллургия , т. е. выделение металлов из растворов их солей более активными металлами (например, получение меди из раствора СuSO 4 действием цинка, железа или алюминия).

В природе иногда встречаются самородные металлы (характерные примеры — Аg, Аu, Рt, Нg), но чаще металлы находятся в виде соединений (металлические руды ). По распространенности в земной коре металлы различны: от наиболее распространенных — Аl, Nа, Са, Fе, Мg, К, Тi) до самых редких — Вi, In, Аg, Аu, Рt, Rе.

Чистые металлы и сплавы, применяемые в радиоэлектронике

Лекция 8. Проводниковые материалы и провода

Назначение проводниковых материалов;

Назначение и виды проводов.

Цели лекции:

Изучение проводниковых материалов;

Изучение проводов.

8.1 Нзначение проводниковых материалов

Большинство металлических проводниковых материалов обладает вы-сокой электропроводностью (ρ = 0,015 ÷ 0,028 мкОм·м). Это преимущес-твенно чистые металлы, которые используют для изготовления обмоточных и радиомонтажных проводов и кабелœей.

Наряду с этим в радиоэлектронике применяют проводники с большим электрическим сопротивлением – сплавы различных металлов. У металличес- ких (резистивных) ρ = 0,4 ÷ 2,0 мкОм·м. Эти сплавы составляют группу металлических материалов с малым температурным коэффициентом удельного сопротивления (ТК ρ ) и применяются для изготовления проволоч- ных резисторов и других радиокомпонентов.

Медь – главный материал, обладающий высокой пластичностью, доста- точной механической прочностью и высокой электропроводностью. Температура плавления меди 1083°С, коэффициент температурного расширения КТР = 17· 10 -6 1/°С. Для изготовления изделий (обмоточные, ра-диомонтажные провода и кабели) применяют чистую медь марок М00к; МОКу; Мок; М1к и М00б; Моб; М1б. Содержание меди 99,99 – 99,90%. У изделий из мягкой меди (при 20°С) плотность 8900 кг/м 3 ; σ р = 200÷280 МПа; е = 6÷35%; ρ = 0,072÷0,01724 мкОм·м. Температурный коэффициент удельного сопротивления для всœех марок меди ТК ρ = 0,0041/°С.

Бронза представляет собой сплавы меди с оловом (оловянная бронза), алюминием (алюминиевая), бериллием (бериллиевая) и другими легирующи-ми элементами. В отношении электропроводности бронза уступает меди, но превосходит ее по механической прочности, упругости, сопротивлению исти- ранию и коррозионной стойкости. Из бронзы изготовляют пружинящие контакты, контактные части разъемов и другие детали.

Латунь – сплав меди с цинком, в котором наибольшее содержание цинка может составлять 45% (по массе). Из листовой латуни изготовляют ра-зличные детали: зажимы, контакты, крепежные детали. Основные харак-теристики бронзы, латуни и меди приведены в таблице 8.1.

Ковар – сплав никеля (около 29% по массе), кобальта (около 18%), же-леза (остальное). Характерной особенностью ковара является близость значе-ний его КТР=(4,3÷5,4) · 10 -6 1/°С к значениям КТР стекла и керамики в интер- вале температур 20 – 200°С. Это позволяет производить согласованные, гер- метичные спаи ковара со стеклом и керамикой. Его применяют для изготовления корпусов ИС и полупроводниковых приборов.

Алюминий является вторым после меди проводниковым материалом благодаря его сравнительно большой электропроводности и стойкости к ат-мосферной коррозии.

Плотность алюминия 2700 кг/м 3 , ᴛ.ᴇ. он в 3,3 раза легче меди, темпе-ратура плавления 658°С. Алюминий отличается малой твердостью и неболь- шой прочностью при растяжении (σ р = 80÷180 МПа) и больший по сравне-нию с медью КТР= 24·10 -6 1/°С. Это является недостатком алюминия.

Из марок алюминия особой чистоты изготовляют обкладки электроли- тических конденсаторов, а также фольгу. Алюминиевую проволоку выпуска- ют Ø0,08 – 8мм трех разновидностей: мягкую (АМ), полутвердую (АПТ), твердую (АТ).

Таблица 8.1

Серебро относится к группе благородных металлов, не окисляющихся в воздухе при комнатной температуре. Окисление начинается при 200°С. Серебро отличается высокой пластичностью, позволяющей получать фольгу и проволоку Ø до 0,01мм, и наивысшей электропроводностью.

Основные характеристики серебра: плотность 1050 кг/м 3 ; температура плавления 960,5 °С; σ р = 150÷180 Мпа (мягкое серебро); σ р = 200÷300 Мпа (твердое серебро); ρ = 0,0158 мкОм·м; ТКρ = 0,003691/°С; КТР= 24·10 -6 1/°С.

Из серебра выполняют защитные слои на медных жилах радиомонтаж- ных проводов, используемых при температуре до 250°С. Серебро наносят на внутреннюю поверхность волноводов для получения слоя с высокой электро-провдностью, а также вводят в припои (ПСр10, ПСр50), применяемые для пайки токопроводящих частой в РЭА.

Золото – в отличие от серебра не окисляется в воздухе даже при высо-ких температурах. Оно обладает весьма высокой пластичностью, из него получают фольгу толщиной до 0,005 мм и проволоку Ø до 0,01мм.

Основные характеристики золота: плотность 1930 кг/м 3 ; температура плавления 1063°С; σ р = 150÷180 Мпа, ρ = 0,0224 мкОм·м; ТКρ = 0,003691/°С;

КТР= 14,2·10 -6 1/°С.

Золото применяют для тонкопленочных контактных покрытий при коммутации малых токов в микросхемах, а также для покрытия стенок

волноводов и резонаторов СВЧ.

Чистые металлы и сплавы, применяемые в радиоэлектронике - понятие и виды. Классификация и особенности категории "Чистые металлы и сплавы, применяемые в радиоэлектронике" 2017, 2018.